Abstract
Sulphonylurea drugs stimulate glucose transport and metabolism in muscle and fat cells in vitro. The molecular basis for the insulin-mimetic extrapancreatic effects of these oral antidiabetic therapeutic agents is unknown at present. Here we demonstrate that incubation of 3T3 adipocytes with the novel sulphonylurea, glimepiride, causes a time- and concentration-dependent release of the glycosylphosphatidylinositol (GPI)-anchored ecto-proteins, 5'-nucleotidase, lipoprotein lipase and a 62 kDa cyclic AMP (cAMP)-binding protein from the plasma membrane into the culture medium. The change in the localization is accompanied by conversion of the membrane-anchored amphiphilic proteins into their soluble hydrophilic versions, as judged by pulse-chase experiments and Triton X-114 partitioning, and by appearance of anti-cross-reacting determinant (CRD) immunoreactivity of the released proteins as shown by Western blotting. Metabolic labelling of cells with myo-[14C]inositol demonstrates that inositol is retained in the major portion of released lipoprotein lipase and cAMP-binding ectoprotein. The identification of inositol phosphate after deamination of these proteins with nitrous acid suggests cleavage of their GPI membrane anchor by a GPI-specific phospholipase C. However, after longer incubation with glimepiride the amount of soluble versions of the GPI-proteins lacking inositol and anti-CRD immunoreactivity increases, which may be caused by additional drug-stimulated hydrolytic events within their GPI structure or C-termini. Since insulin also stimulates membrane release of these GPI-modified proteins, and in combination with glimepiride in a synergistic manner, sulphonylurea drugs may exert their peripheral actions in adipose tissue by using (part of) the insulin postreceptor signalling cascade at the step of activation of a GPI-specific phospholipase C.
Full text
PDF












Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avruch J., Wallach D. F. Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells. Biochim Biophys Acta. 1971 Apr 13;233(2):334–347. doi: 10.1016/0005-2736(71)90331-2. [DOI] [PubMed] [Google Scholar]
- Bagdade J. D., Porte D., Jr, Bierman E. L. Diabetic lipemia. A form of acquired fat-induced lipemia. N Engl J Med. 1967 Feb 23;276(8):427–433. doi: 10.1056/NEJM196702232760802. [DOI] [PubMed] [Google Scholar]
- Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
- Boyd A. E., 3rd Sulfonylurea receptors, ion channels, and fruit flies. Diabetes. 1988 Jul;37(7):847–850. doi: 10.2337/diab.37.7.847. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- CAREN R., CORBO L. The potentiation of exogenous insulin by tolbutamide in depancreatized dogs. J Clin Invest. 1957 Nov;36(11):1546–1550. doi: 10.1172/JCI103551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chamberlain J. P. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate. Anal Biochem. 1979 Sep 15;98(1):132–135. doi: 10.1016/0003-2697(79)90716-4. [DOI] [PubMed] [Google Scholar]
- Chan B. L., Lisanti M. P., Rodriguez-Boulan E., Saltiel A. R. Insulin-stimulated release of lipoprotein lipase by metabolism of its phosphatidylinositol anchor. Science. 1988 Sep 23;241(4873):1670–1672. doi: 10.1126/science.241.4873.1670. [DOI] [PubMed] [Google Scholar]
- Clancy B. M., Czech M. P. Hexose transport stimulation and membrane redistribution of glucose transporter isoforms in response to cholera toxin, dibutyryl cyclic AMP, and insulin in 3T3-L1 adipocytes. J Biol Chem. 1990 Jul 25;265(21):12434–12443. [PubMed] [Google Scholar]
- Cooper D. R., Vila M. C., Watson J. E., Nair G., Pollet R. J., Standaert M., Farese R. V. Sulfonylurea-stimulated glucose transport association with diacylglycerollike activation of protein kinase C in BC3H1 myocytes. Diabetes. 1990 Nov;39(11):1399–1407. doi: 10.2337/diab.39.11.1399. [DOI] [PubMed] [Google Scholar]
- Davidson M. B., Molnar I. G., Furman A., Yamaguchi D. Glyburide-stimulated glucose transport in cultured muscle cells via protein kinase C-mediated pathway requiring new protein synthesis. Diabetes. 1991 Nov;40(11):1531–1538. doi: 10.2337/diab.40.11.1531. [DOI] [PubMed] [Google Scholar]
- Davidson M. B., Sladen G. Effect of glyburide on glycogen metabolism in cultured rat hepatocytes. Metabolism. 1987 Oct;36(10):925–930. doi: 10.1016/0026-0495(87)90125-9. [DOI] [PubMed] [Google Scholar]
- Eckel R. H., Fujimoto W. Y., Brunzell J. D. Insulin regulation of lipoprotein lipase in cultured 3T3-L1 cells. Biochem Biophys Res Commun. 1978 Oct 30;84(4):1069–1075. doi: 10.1016/0006-291x(78)91692-3. [DOI] [PubMed] [Google Scholar]
- Farese R. V., Ishizuka T., Standaert M. L., Cooper D. R. Sulfonylureas activate glucose transport and protein kinase C in rat adipocytes. Metabolism. 1991 Feb;40(2):196–200. doi: 10.1016/0026-0495(91)90174-u. [DOI] [PubMed] [Google Scholar]
- Geisen K. Special pharmacology of the new sulfonylurea glimepiride. Arzneimittelforschung. 1988 Aug;38(8):1120–1130. [PubMed] [Google Scholar]
- Gerich J. E. Oral hypoglycemic agents. N Engl J Med. 1989 Nov 2;321(18):1231–1245. doi: 10.1056/NEJM198911023211805. [DOI] [PubMed] [Google Scholar]
- Gibson W. R., Bourne A. R., Sernia C. D-Xylose transport in isolated skeletal muscle of chickens: effects of insulin and tolbutamide. Comp Biochem Physiol C. 1980;67C(1):41–47. doi: 10.1016/0306-4492(80)90056-8. [DOI] [PubMed] [Google Scholar]
- Greenfield M. S., Doberne L., Rosenthal M., Schulz B., Widstrom A., Reaven G. M. Effect of sulfonylurea treatment on in vivo insulin secretion and action in patients with non-insulin-dependent diabetes mellitus. Diabetes. 1982 Apr;31(4 Pt 1):307–312. doi: 10.2337/diab.31.4.307. [DOI] [PubMed] [Google Scholar]
- Harrison S. A., Buxton J. M., Clancy B. M., Czech M. P. Evidence that erythroid-type glucose transporter intrinsic activity is modulated by cadmium treatment of mouse 3T3-L1 cells. J Biol Chem. 1991 Oct 15;266(29):19438–19449. [PubMed] [Google Scholar]
- Hidalgo C., Gonzalez M. E., Lagos R. Characterization of the Ca2+- or Mg2+-ATPase of transverse tubule membranes isolated from rabbit skeletal muscle. J Biol Chem. 1983 Nov 25;258(22):13937–13945. [PubMed] [Google Scholar]
- Hirshman M. F., Horton E. S. Glyburide increases insulin sensitivity and responsiveness in peripheral tissues of the rat as determined by the glucose clamp technique. Endocrinology. 1990 May;126(5):2407–2412. doi: 10.1210/endo-126-5-2407. [DOI] [PubMed] [Google Scholar]
- Ishihara M., Fedarko N. S., Conrad H. E. Involvement of phosphatidylinositol and insulin in the coordinate regulation of proteoheparan sulfate metabolism and hepatocyte growth. J Biol Chem. 1987 Apr 5;262(10):4708–4716. [PubMed] [Google Scholar]
- Jacobs D. B., Hayes G. R., Lockwood D. H. Effect of chlorpropamide on glucose transport in rat adipocytes in the absence of changes in insulin binding and receptor-associated tyrosine kinase activity. Metabolism. 1987 Jun;36(6):548–554. doi: 10.1016/0026-0495(87)90165-x. [DOI] [PubMed] [Google Scholar]
- Jacobs D. B., Hayes G. R., Lockwood D. H. In vitro effects of sulfonylurea on glucose transport and translocation of glucose transporters in adipocytes from streptozocin-induced diabetic rats. Diabetes. 1989 Feb;38(2):205–211. doi: 10.2337/diab.38.2.205. [DOI] [PubMed] [Google Scholar]
- James D. E., Strube M., Mueckler M. Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature. 1989 Mar 2;338(6210):83–87. doi: 10.1038/338083a0. [DOI] [PubMed] [Google Scholar]
- Klip A., Ramlal T., Douen A. G., Burdett E., Young D., Cartee G. D., Holloszy J. O. Insulin-induced decrease in 5'-nucleotidase activity in skeletal muscle membranes. FEBS Lett. 1988 Oct 10;238(2):419–423. doi: 10.1016/0014-5793(88)80524-6. [DOI] [PubMed] [Google Scholar]
- Kolterman O. G., Gray R. S., Shapiro G., Scarlett J. A., Griffin J., Olefsky J. M. The acute and chronic effects of sulfonylurea therapy in type II diabetic subjects. Diabetes. 1984 Apr;33(4):346–354. doi: 10.2337/diab.33.4.346. [DOI] [PubMed] [Google Scholar]
- Kramer W., Oekonomopulos R., Pünter J., Summ H. D. Direct photoaffinity labeling of the putative sulfonylurea receptor in rat beta-cell tumor membranes by [3H]glibenclamide. FEBS Lett. 1988 Mar 14;229(2):355–359. doi: 10.1016/0014-5793(88)81155-4. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lang B., Burger G., Bandlow W. Activity of reduced ubiquinone: cytochrome c oxidoreductase with various ubiquinol-isoprenologues as substrate and corresponding inhibitory effect of antimycin in yeast. Biochim Biophys Acta. 1974 Oct 18;368(1):71–85. doi: 10.1016/0005-2728(74)90098-x. [DOI] [PubMed] [Google Scholar]
- Larner J. Insulin-signaling mechanisms. Lessons from the old testament of glycogen metabolism and the new testament of molecular biology. Diabetes. 1988 Mar;37(3):262–275. doi: 10.2337/diab.37.3.262. [DOI] [PubMed] [Google Scholar]
- Lebovitz H. E., Feinglos M. N., Bucholtz H. K., Lebovitz F. L. Potentiation of insulin action: a probable mechanism for the anti-diabetic action of sulfonylurea drugs. J Clin Endocrinol Metab. 1977 Sep;45(3):601–604. doi: 10.1210/jcem-45-3-601. [DOI] [PubMed] [Google Scholar]
- Levy J. R., Murray E., Manolagas S., Olefsky J. M. Demonstration of insulin receptors and modulation of alkaline phosphatase activity by insulin in rat osteoblastic cells. Endocrinology. 1986 Oct;119(4):1786–1792. doi: 10.1210/endo-119-4-1786. [DOI] [PubMed] [Google Scholar]
- Lisanti M. P., Darnell J. C., Chan B. L., Rodriguez-Boulan E., Saltiel A. R. The distribution of glycosyl-phosphatidylinositol anchored proteins is differentially regulated by serum and insulin. Biochem Biophys Res Commun. 1989 Oct 31;164(2):824–832. doi: 10.1016/0006-291x(89)91533-7. [DOI] [PubMed] [Google Scholar]
- Low M. G. Biochemistry of the glycosyl-phosphatidylinositol membrane protein anchors. Biochem J. 1987 May 15;244(1):1–13. doi: 10.1042/bj2440001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Low M. G., Finean J. B. Specific release of plasma membrane enzymes by a phosphatidylinositol-specific phospholipase C. Biochim Biophys Acta. 1978 Apr 20;508(3):565–570. doi: 10.1016/0005-2736(78)90100-1. [DOI] [PubMed] [Google Scholar]
- Low M. G., Saltiel A. R. Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science. 1988 Jan 15;239(4837):268–275. doi: 10.1126/science.3276003. [DOI] [PubMed] [Google Scholar]
- Maloff B. L., Lockwood D. H. In vitro effects of a sulfonylurea on insulin action in adipocytes. Potentiation of insulin-stimulated hexose transport. J Clin Invest. 1981 Jul;68(1):85–90. doi: 10.1172/JCI110257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandarino L. J., Gerich J. E. Prolonged sulfonylurea administration decreases insulin resistance and increases insulin secretion in non-insulin-dependent diabetes mellitus: evidence for improved insulin action at a postreceptor site in hepatic as well as extrahepatic tissues. Diabetes Care. 1984 May-Jun;7 (Suppl 1):89–99. [PubMed] [Google Scholar]
- Martz A., Jo I., Jung C. Y. Sulfonylurea binding to adipocyte membranes and potentiation of insulin-stimulated hexose transport. J Biol Chem. 1989 Aug 15;264(23):13672–13678. [PubMed] [Google Scholar]
- Müller G., Bandlow W. A cAMP-binding ectoprotein in the yeast Saccharomyces cerevisiae. Biochemistry. 1991 Oct 22;30(42):10181–10190. doi: 10.1021/bi00106a016. [DOI] [PubMed] [Google Scholar]
- Müller G., Bandlow W. An amphitropic cAMP-binding protein in yeast mitochondria. 1. Synergistic control of the intramitochondrial location by calcium and phospholipid. Biochemistry. 1989 Dec 26;28(26):9957–9967. doi: 10.1021/bi00452a013. [DOI] [PubMed] [Google Scholar]
- Müller G., Bandlow W. Two lipid-anchored cAMP-binding proteins in the yeast Saccharomyces cerevisiae are unrelated to the R subunit of cytoplasmic protein kinase A. Eur J Biochem. 1991 Dec 5;202(2):299–308. doi: 10.1111/j.1432-1033.1991.tb16376.x. [DOI] [PubMed] [Google Scholar]
- Müller G., Zimmermann R. Import of honeybee prepromelittin into the endoplasmic reticulum: structural basis for independence of SRP and docking protein. EMBO J. 1987 Jul;6(7):2099–2107. doi: 10.1002/j.1460-2075.1987.tb02476.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nilsson-Ehle P., Schotz M. C. A stable, radioactive substrate emulsion for assay of lipoprotein lipase. J Lipid Res. 1976 Sep;17(5):536–541. [PubMed] [Google Scholar]
- Obermaier-Kusser B., Mühlbacher C., Mushack J., Seffer E., Ermel B., Machicao F., Schmidt F., Häring H. U. Further evidence for a two-step model of glucose-transport regulation. Inositol phosphate-oligosaccharides regulate glucose-carrier activity. Biochem J. 1989 Aug 1;261(3):699–705. doi: 10.1042/bj2610699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pomerantz A. H., Rudolph S. A., Haley B. E., Greengard P. Photoaffinity labeling of a protein kinase from bovine brain with 8-azidoadenosine 3',5'-monophosphate. Biochemistry. 1975 Aug 26;14(17):3858–3862. doi: 10.1021/bi00688a019. [DOI] [PubMed] [Google Scholar]
- Popov N., Schmitt M., Schulzeck S., Matthies H. Eine störungsfreie Mikromethode zur Bestimmung des Proteingehaltes in Gewebehomogenaten. Acta Biol Med Ger. 1975;34(9):1441–1446. [PubMed] [Google Scholar]
- Putnam W. S., Andersen D. K., Jones R. S., Lebovitz H. E. Selective potentiation of insulin-mediated glucose disposal in normal dogs by the sulfonylurea glipizide. J Clin Invest. 1981 Apr;67(4):1016–1023. doi: 10.1172/JCI110112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogers B. J., Standaert M. L., Pollet R. J. Direct effects of sulfonylurea agents on glucose transport in the BC3H-1 myocyte. Diabetes. 1987 Nov;36(11):1292–1296. doi: 10.2337/diab.36.11.1292. [DOI] [PubMed] [Google Scholar]
- Romero G., Luttrell L., Rogol A., Zeller K., Hewlett E., Larner J. Phosphatidylinositol-glycan anchors of membrane proteins: potential precursors of insulin mediators. Science. 1988 Apr 22;240(4851):509–511. doi: 10.1126/science.3282305. [DOI] [PubMed] [Google Scholar]
- Rödel G., Müller G., Bandlow W. Cyclic AMP receptor protein from yeast mitochondria: submitochondrial localization and preliminary characterization. J Bacteriol. 1985 Jan;161(1):7–12. doi: 10.1128/jb.161.1.7-12.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
- Saltiel A. R., Cuatrecasas P. Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5793–5797. doi: 10.1073/pnas.83.16.5793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saltiel A. R., Fox J. A., Sherline P., Cuatrecasas P. Insulin-stimulated hydrolysis of a novel glycolipid generates modulators of cAMP phosphodiesterase. Science. 1986 Aug 29;233(4767):967–972. doi: 10.1126/science.3016898. [DOI] [PubMed] [Google Scholar]
- Semb H., Olivecrona T. Mechanisms for turnover of lipoprotein lipase in guinea pig adipocytes. Biochim Biophys Acta. 1987 Sep 4;921(1):104–115. doi: 10.1016/0005-2760(87)90176-7. [DOI] [PubMed] [Google Scholar]
- Simonson D. C., Ferrannini E., Bevilacqua S., Smith D., Barrett E., Carlson R., DeFronzo R. A. Mechanism of improvement in glucose metabolism after chronic glyburide therapy. Diabetes. 1984 Sep;33(9):838–845. doi: 10.2337/diab.33.9.838. [DOI] [PubMed] [Google Scholar]
- Simpson I. A., Yver D. R., Hissin P. J., Wardzala L. J., Karnieli E., Salans L. B., Cushman S. W. Insulin-stimulated translocation of glucose transporters in the isolated rat adipose cells: characterization of subcellular fractions. Biochim Biophys Acta. 1983 Dec 19;763(4):393–407. doi: 10.1016/0167-4889(83)90101-5. [DOI] [PubMed] [Google Scholar]
- Spooner P. M., Chernick S. S., Garrison M. M., Scow R. O. Insulin regulation of lipoprotein lipase activity and release in 3T3-L1 adipocytes. Separation and dependence of hormonal effects on hexose metabolism and synthesis of RNA and protein. J Biol Chem. 1979 Oct 25;254(20):10021–10029. [PubMed] [Google Scholar]
- Standing V. F., Foy J. M. The effect of glibenclamide on glucose uptake in the isolated rat diaphragm. Postgrad Med J. 1970 Dec;(Suppl):16–20. [PubMed] [Google Scholar]
- Tordjman K. M., Leingang K. A., James D. E., Mueckler M. M. Differential regulation of two distinct glucose transporter species expressed in 3T3-L1 adipocytes: effect of chronic insulin and tolbutamide treatment. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7761–7765. doi: 10.1073/pnas.86.20.7761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogt B., Mushack J., Seffer E., Häring H. U. The phorbol ester TPA induces a translocation of the insulin sensitive glucose carrier (GLUT4) in fat cells. Biochem Biophys Res Commun. 1990 May 16;168(3):1089–1094. doi: 10.1016/0006-291x(90)91141-e. [DOI] [PubMed] [Google Scholar]
- WROBLEWSKI F., LADUE J. S. Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med. 1955 Oct;90(1):210–213. doi: 10.3181/00379727-90-21985. [DOI] [PubMed] [Google Scholar]
- Wang P. H., Beguinot F., Smith R. J. Augmentation of the effects of insulin and insulin-like growth factors I and II on glucose uptake in cultured rat skeletal muscle cells by sulfonylureas. Diabetologia. 1987 Oct;30(10):797–803. doi: 10.1007/BF00275746. [DOI] [PubMed] [Google Scholar]
- Wang P. H., Moller D., Flier J. S., Nayak R. C., Smith R. J. Coordinate regulation of glucose transporter function, number, and gene expression by insulin and sulfonylureas in L6 rat skeletal muscle cells. J Clin Invest. 1989 Jul;84(1):62–67. doi: 10.1172/JCI114170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward G., Harrison L. C., Proietto J., Aitken P., Nankervis A. Gliclazide therapy is associated with potentiation of postbinding insulin action in obese, non-insulin-dependent diabetic subjects. Diabetes. 1985 Mar;34(3):241–245. doi: 10.2337/diab.34.3.241. [DOI] [PubMed] [Google Scholar]
- YALOW R. S., BLACK H., VILLAZON M., BERSON S. A. Comparison of plasma insulin levels following administration of tolbutamide and glucose. Diabetes. 1960 Sep-Oct;9:356–362. doi: 10.2337/diab.9.5.356. [DOI] [PubMed] [Google Scholar]
- Zamze S. E., Ferguson M. A., Collins R., Dwek R. A., Rademacher T. W. Characterization of the cross-reacting determinant (CRD) of the glycosyl-phosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoprotein. Eur J Biochem. 1988 Oct 1;176(3):527–534. doi: 10.1111/j.1432-1033.1988.tb14310.x. [DOI] [PubMed] [Google Scholar]