Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Jan 15;289(Pt 2):575–580. doi: 10.1042/bj2890575

Iodide modulation of the EDTA-induced iodine reductase activity of horseradish peroxidase by interaction at or near the EDTA-binding site.

D K Bhattacharyya 1, U Bandyopadhyay 1, R Chatterjee 1, R K Banerjee 1
PMCID: PMC1132207  PMID: 8424798

Abstract

Horseradish peroxidase (HRP) catalyses the reduction of iodinium ion (I+) to iodide by H2O2 in the presence of EDTA. I+ reduction occurs optimally at pH 6 whereas the enzyme catalyses iodide oxidation optimally at pH 3.5. Thus the two activities reside on the same enzyme with two characteristic pH optima. Iodide modulates the expression of the reductase activity by EDTA. Higher concentrations of iodide inhibit the reductase activity by EDTA. Nitrite, an electron donor, acts similarly to iodide. Both EDTA and nitrite competitively inhibit iodide oxidation, indicating that they compete with iodide for the same binding site for electron flow to the haem iron group. However, unlike iodide, EDTA converts compound I, not into the native enzyme, but into a compound absorbing at 416 nm which reduces I+ and then returns to the native form. The apparent equilibrium dissociation constant, KD, for the formation of the EDTA-HRP complex (15 mM) is doubled in the presence of iodide, indicating interference with EDTA binding by iodide. EDTA binds away from the haem iron centre and not through intramolecular Ca2+. The pH-dependence of EDTA binding indicates that an ionizable group of the enzyme with pKa 5.8, presumably a distal histidine, controls the binding. The data suggest that iodide competes with EDTA for compound I and modulates the iodine reductase activity by limiting the formation of the 416 nm-absorbing active compound.

Full text

PDF
575

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aibara S., Yamashita H., Mori E., Kato M., Morita Y. Isolation and characterization of five neutral isoenzymes of horseradish peroxidase. J Biochem. 1982 Aug;92(2):531–539. doi: 10.1093/oxfordjournals.jbchem.a133961. [DOI] [PubMed] [Google Scholar]
  2. Ator M. A., David S. K., Ortiz de Montellano P. R. Stabilized isoporphyrin intermediates in the inactivation of horseradish peroxidase by alkylhydrazines. J Biol Chem. 1989 Jun 5;264(16):9250–9257. [PubMed] [Google Scholar]
  3. Ator M. A., David S. K., Ortiz de Montellano P. R. Structure and catalytic mechanism of horseradish peroxidase. Regiospecific meso alkylation of the prosthetic heme group by alkylhydrazines. J Biol Chem. 1987 Nov 5;262(31):14954–14960. [PubMed] [Google Scholar]
  4. Ator M. A., Ortiz de Montellano P. R. Protein control of prosthetic heme reactivity. Reaction of substrates with the heme edge of horseradish peroxidase. J Biol Chem. 1987 Feb 5;262(4):1542–1551. [PubMed] [Google Scholar]
  5. Banerjee R. K. EDTA inhibits peroxidase-catalyzed iodide oxidation through interaction at the iodide binding site. Biochim Biophys Acta. 1989 Sep 15;992(3):393–396. doi: 10.1016/0304-4165(89)90102-5. [DOI] [PubMed] [Google Scholar]
  6. Banerjee R. K. Mechanism of horseradish peroxidase-catalyzed conversion of iodine to iodide in the presence of EDTA and H2O2. J Biol Chem. 1989 Jun 5;264(16):9188–9194. [PubMed] [Google Scholar]
  7. Bhattacharyya D. K., Bandyopadhyay U., Banerjee R. K. Chemical and kinetic evidence for an essential histidine in horseradish peroxidase for iodide oxidation. J Biol Chem. 1992 May 15;267(14):9800–9804. [PubMed] [Google Scholar]
  8. Björkstén F. The horseradish peroxidase-catalyzed oxidation of iodide. Outline of the mechanism. Biochim Biophys Acta. 1970 Sep 16;212(3):396–406. doi: 10.1016/0005-2744(70)90245-7. [DOI] [PubMed] [Google Scholar]
  9. Blanke S. R., Hager L. P. Chemical modification of chloroperoxidase with diethylpyrocarbonate. Evidence for the presence of an essential histidine residue. J Biol Chem. 1990 Jul 25;265(21):12454–12461. [PubMed] [Google Scholar]
  10. De Sandro V., Dupuy C., Kaniewski J., Ohayon R., Dème D., Virion A., Pommier J. Mechanism of NADPH oxidation catalyzed by horse-radish peroxidase and 2,4-diacetyl-[2H]heme-substituted horse-radish peroxidase. Eur J Biochem. 1991 Oct 15;201(2):507–513. doi: 10.1111/j.1432-1033.1991.tb16310.x. [DOI] [PubMed] [Google Scholar]
  11. Ellis W. D., Dunford H. B. The kinetics of cyanide and fluoride binding by ferric horseradish peroxidase. Biochemistry. 1968 Jun;7(6):2054–2062. doi: 10.1021/bi00846a006. [DOI] [PubMed] [Google Scholar]
  12. Haschke R. H., Friedhoff J. M. Calcium-related properties of horseradish peroxidase. Biochem Biophys Res Commun. 1978 Feb 28;80(4):1039–1042. doi: 10.1016/0006-291x(78)91350-5. [DOI] [PubMed] [Google Scholar]
  13. Hosoya T., Sakurada J., Kurokawa C., Toyoda R., Nakamura S. Interaction of aromatic donor molecules with lactoperoxidase probed by optical difference spectra. Biochemistry. 1989 Mar 21;28(6):2639–2644. doi: 10.1021/bi00432a042. [DOI] [PubMed] [Google Scholar]
  14. Ikeda-Saito M., Shelley D. A., Lu L., Booth K. S., Caughey W. S., Kimura S. Salicylhydroxamic acid inhibits myeloperoxidase activity. J Biol Chem. 1991 Feb 25;266(6):3611–3616. [PubMed] [Google Scholar]
  15. KEILIN D., HARTREE E. F. Purification of horse-radish peroxidase and comparison of its properties with those of catalase and methaemoglobin. Biochem J. 1951 Jun;49(1):88–104. doi: 10.1042/bj0490088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Modi S., Behere D. V., Mitra S. Binding of aromatic donor molecules to lactoperoxidase: proton NMR and optical difference spectroscopic studies. Biochim Biophys Acta. 1989 Jul 6;996(3):214–225. doi: 10.1016/0167-4838(89)90250-1. [DOI] [PubMed] [Google Scholar]
  17. Modi S., Behere D. V., Mitra S. Binding of thiocyanate to lactoperoxidase: 1H and 15N nuclear magnetic resonance studies. Biochemistry. 1989 May 30;28(11):4689–4694. doi: 10.1021/bi00437a027. [DOI] [PubMed] [Google Scholar]
  18. Modi S., Behere D. V., Mitra S. Interaction of thiocyanate with horseradish peroxidase. 1H and 15N nuclear magnetic resonance studies. J Biol Chem. 1989 Nov 25;264(33):19677–19684. [PubMed] [Google Scholar]
  19. Morrison M., Schonbaum G. R. Peroxidase-catalyzed halogenation. Annu Rev Biochem. 1976;45:861–888. doi: 10.1146/annurev.bi.45.070176.004241. [DOI] [PubMed] [Google Scholar]
  20. Nunez J., Pommier J. Iodation des protéines par voie enzymatique. 2. Formation d'un composé intermédiaire peroxydase-halogène. Eur J Biochem. 1968 Jun;5(1):114–118. doi: 10.1111/j.1432-1033.1968.tb00344.x. [DOI] [PubMed] [Google Scholar]
  21. Olsen J., Davis L. The oxidation of dithiothreitol by peroxidases and oxygen. Biochim Biophys Acta. 1976 Sep 14;445(2):324–329. doi: 10.1016/0005-2744(76)90086-3. [DOI] [PubMed] [Google Scholar]
  22. Ortiz de Montellano P. R., David S. K., Ator M. A., Tew D. Mechanism-based inactivation of horseradish peroxidase by sodium azide. Formation of meso-azidoprotoporphyrin IX. Biochemistry. 1988 Jul 26;27(15):5470–5476. doi: 10.1021/bi00415a013. [DOI] [PubMed] [Google Scholar]
  23. Paul K. G., Ohlsson P. I. Equilibria between horseradish peroxidase and aromatic donors. Acta Chem Scand B. 1978;32(6):395–404. doi: 10.3891/acta.chem.scand.32b-0395. [DOI] [PubMed] [Google Scholar]
  24. Pommier J., Sokoloff L., Nunez J. Enzymatic iodination of protein. Kinetics of iodine formation and protein iodination catalyzed by horse-radish peroxidase. Eur J Biochem. 1973 Oct 18;38(3):497–506. doi: 10.1111/j.1432-1033.1973.tb03085.x. [DOI] [PubMed] [Google Scholar]
  25. Poulos T. L., Kraut J. The stereochemistry of peroxidase catalysis. J Biol Chem. 1980 Sep 10;255(17):8199–8205. [PubMed] [Google Scholar]
  26. Roman R., Dumbord H. B. pH dependence of the oxidation of iodide by compound I of horseradish peroxidase. Biochemistry. 1972 May 23;11(11):2076–2082. doi: 10.1021/bi00761a013. [DOI] [PubMed] [Google Scholar]
  27. Sakurada J., Takahashi S., Hosoya T. Nuclear magnetic resonance studies on the spatial relationship of aromatic donor molecules to the heme iron of horseradish peroxidase. J Biol Chem. 1986 Jul 25;261(21):9657–9662. [PubMed] [Google Scholar]
  28. Sakurada J., Takahashi S., Hosoya T. Proton nuclear magnetic resonance studies on the iodide binding by horseradish peroxidase. J Biol Chem. 1987 Mar 25;262(9):4007–4010. [PubMed] [Google Scholar]
  29. Sakurada J., Takahashi S., Shimizu T., Hatano M., Nakamura S., Hosoya T. Proton and iodine-127 nuclear magnetic resonance studies on the binding of iodide by lactoperoxidase. Biochemistry. 1987 Oct 6;26(20):6478–6483. doi: 10.1021/bi00394a028. [DOI] [PubMed] [Google Scholar]
  30. Schejter A., Lanir A., Epstein N. Binding of hydrogen donors to horseradish peroxidase: a spectroscopic study. Arch Biochem Biophys. 1976 May;174(1):36–44. doi: 10.1016/0003-9861(76)90321-0. [DOI] [PubMed] [Google Scholar]
  31. Tien M., Tu C. P. Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium. Nature. 1987 Apr 2;326(6112):520–523. doi: 10.1038/326520a0. [DOI] [PubMed] [Google Scholar]
  32. Ugarova N. N., Savitski A. P., Berezin I. V. The protoporphyrin-apoperoxidase complex as a horseradish peroxidase analog. A fluorimetric study of the heme pocket. Biochim Biophys Acta. 1981 Dec 15;662(2):210–219. doi: 10.1016/0005-2744(81)90032-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES