Abstract
Inner membranes were prepared from Escherichia coli strain RG 145, which is deficient in cytochrome bd, but overexpresses cytochrome bo [Au and Gennis (1987) J. Bacteriol. 169, 3237-3242]. The latter was purified 7-fold by extracting the membranes with octyl beta-D-glucopyranoside, followed by chromatography on DEAE-Sepharose, yielding 150 mg of protein/150 g wet weight of cells. Optical e.p.r. and low-temperature m.c.d. (magnetic circular dichroism) spectroscopies were used to investigate the nature of the protein ligands to the two haems in cytochrome bo from E. coli. Low-spin ferric haem b, the origin of a rhombic e.p.r. spectrum with g = 2.98, 2.26 and 1.50, gives rise to a charge-transfer band in the near-i.r. m.c.d. spectrum at 1622 nm. It is therefore concluded that haem b is co-ordinated by two histidine residues. The low-temperature m.c.d. spectrum of dithionite-reduced cytochrome bo comprises bands due both to low-spin ferrous haem b and to high-spin ferrous haem o. The bands arising from haem o show a direct correspondence with those in the m.c.d. spectrum of five-co-ordinate histidine-ligated ferrous haems such as myoglobin, implying that the protein residue liganding haem o is also histidine. This assignment was confirmed by measuring the e.p.r. spectrum of the nitric oxide derivative of fully reduced cytochrome bo. This showed a rhombic spectrum with g = 2.098, 2.008 and 1.987, and nuclear hyperfine splitting consistent with the co-ordination of ferrous haem by NO and histidine. The hyperfine splittings observed were 1.95 +/- 0.05 mT for the 14N of the NO ligand and 0.75 +/- 0.05 mT for the 14N of the proximal histidine. The e.p.r. spectrum of some samples of oxidized cytochrome bo show, at temperatures below 15 K, broad signals at g = 7.6, 3.6 and 2.8, and other preparations in the presence of glycerol yield signals at g = 10.8, 3.2 and 2.6. These signals, which are abolished by the addition of cyanide, are assigned to the binuclear centre, cytochrome o-CuB, suggesting that the binuclear site may display heterogeneity. Carbon monoxide reacts with the reduced enzyme with a stoichiometry of 1:1, and the dissociation constant for this reaction was determined to be 1.7 x 10(-6)M. The second-order rate constants for this reaction were measured and shown to be similar to those determined for bovine cytochrome aa3 [Gibson and Greenwood (1963) Biochem. J. 86, 541-554].
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ascenzi P., Giacometti G. M., Antonini E., Rotilio G., Brunori M. Equilibrium and kinetic evidence for a transition between six- and five-coordinate ferrous heme in the nitric oxide derivative of Aplysia myoglobin. J Biol Chem. 1981 Jun 10;256(11):5383–5386. [PubMed] [Google Scholar]
- Au D. C., Gennis R. B. Cloning of the cyo locus encoding the cytochrome o terminal oxidase complex of Escherichia coli. J Bacteriol. 1987 Jul;169(7):3237–3242. doi: 10.1128/jb.169.7.3237-3242.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker G. M., Noguchi M., Palmer G. The reaction of cytochrome oxidase with cyanide. Preparation of the rapidly reacting form and its conversion to the slowly reacting form. J Biol Chem. 1987 Jan 15;262(2):595–604. [PubMed] [Google Scholar]
- Blackmore R. S., Brittain T., Greenwood C. An analysis of the reaction kinetics of the hexahaem nitrite reductase of the anaerobic rumen bacterium Wolinella succinogenes. Biochem J. 1990 Oct 15;271(2):457–461. doi: 10.1042/bj2710457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blokzijl-Homan M. F., van Gelder B. F. Biochemical and biophysical studies on cytochrome aa 3 . 3. The EPR spectrum of NO-ferrocytochrome a 3 . Biochim Biophys Acta. 1971 Jun 15;234(3):493–498. doi: 10.1016/0005-2728(71)90215-5. [DOI] [PubMed] [Google Scholar]
- Brittain T., Greenwood C. Photolytic studies on the carbon monoxide complex of sulphaemoglobin. Biochem J. 1982 Jan 1;201(1):153–159. doi: 10.1042/bj2010153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brudvig G. W., Stevens T. H., Chan S. I. Reactions of nitric oxide with cytochrome c oxidase. Biochemistry. 1980 Nov 11;19(23):5275–5285. doi: 10.1021/bi00564a020. [DOI] [PubMed] [Google Scholar]
- CASTOR L. N., CHANCE B. Photochemical determinations of the oxidases of bacteria. J Biol Chem. 1959 Jun;234(6):1587–1592. [PubMed] [Google Scholar]
- Chepuri V., Lemieux L., Au D. C., Gennis R. B. The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa3-type family of cytochrome c oxidases. J Biol Chem. 1990 Jul 5;265(19):11185–11192. [PubMed] [Google Scholar]
- Eglinton D. G., Johnson M. K., Thomson A. J., Gooding P. E., Greenwood C. Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase. Biochem J. 1980 Nov 1;191(2):319–331. doi: 10.1042/bj1910319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farrar J. A., Thomson A. J., Cheesman M. R., Dooley D. M., Zumft W. G. A model of the copper centres of nitrous oxide reductase (Pseudomonas stutzeri). Evidence from optical, EPR and MCD spectroscopy. FEBS Lett. 1991 Dec 2;294(1-2):11–15. doi: 10.1016/0014-5793(91)81331-2. [DOI] [PubMed] [Google Scholar]
- GIBSON Q. H., GREENWOOD C. Reactions of cytochrome oxidase with oxygen and carbon monoxide. Biochem J. 1963 Mar;86:541–554. doi: 10.1042/bj0860541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenwood C., Hill B. C., Barber D., Eglinton D. G., Thomson A. J. The optical properties of CuA in bovine cytochrome c oxidase determined by low-temperature magnetic-circular-dichroism spectroscopy. Biochem J. 1983 Nov 1;215(2):303–316. doi: 10.1042/bj2150303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartzell C. R., Beinert H. Components of cytochrome c oxidase detectable by EPR spectroscopy. Biochim Biophys Acta. 1974 Dec 19;368(3):318–338. doi: 10.1016/0005-2728(74)90178-9. [DOI] [PubMed] [Google Scholar]
- Hochstrasser D. F., Patchornik A., Merril C. R. Development of polyacrylamide gels that improve the separation of proteins and their detection by silver staining. Anal Biochem. 1988 Sep;173(2):412–423. doi: 10.1016/0003-2697(88)90208-4. [DOI] [PubMed] [Google Scholar]
- Iuchi S., Lin E. C. Adaptation of Escherichia coli to respiratory conditions: regulation of gene expression. Cell. 1991 Jul 12;66(1):5–7. doi: 10.1016/0092-8674(91)90130-q. [DOI] [PubMed] [Google Scholar]
- Kita K., Konishi K., Anraku Y. Terminal oxidases of Escherichia coli aerobic respiratory chain. I. Purification and properties of cytochrome b562-o complex from cells in the early exponential phase of aerobic growth. J Biol Chem. 1984 Mar 10;259(5):3368–3374. [PubMed] [Google Scholar]
- Kon H., Kataoka N. Electron paramagnetic resonance of nitric oxide--protoheme complexes with some nitrogenous base. Model systems of nitric oxide hemoproteins. Biochemistry. 1969 Dec;8(12):4757–4762. doi: 10.1021/bi00840a016. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lemieux L. J., Calhoun M. W., Thomas J. W., Ingledew W. J., Gennis R. B. Determination of the ligands of the low spin heme of the cytochrome o ubiquinol oxidase complex using site-directed mutagenesis. J Biol Chem. 1992 Jan 25;267(3):2105–2113. [PubMed] [Google Scholar]
- Matsushita K., Patel L., Kaback H. R. Cytochrome o type oxidase from Escherichia coli. Characterization of the enzyme and mechanism of electrochemical proton gradient generation. Biochemistry. 1984 Sep 25;23(20):4703–4714. doi: 10.1021/bi00315a028. [DOI] [PubMed] [Google Scholar]
- Merril C. R. Gel-staining techniques. Methods Enzymol. 1990;182:477–488. doi: 10.1016/0076-6879(90)82038-4. [DOI] [PubMed] [Google Scholar]
- Minagawa J., Mogi T., Gennis R. B., Anraku Y. Identification of heme and copper ligands in subunit I of the cytochrome bo complex in Escherichia coli. J Biol Chem. 1992 Jan 25;267(3):2096–2104. [PubMed] [Google Scholar]
- Moody A. J., Cooper C. E., Rich P. R. Characterisation of 'fast' and 'slow' forms of bovine heart cytochrome-c oxidase. Biochim Biophys Acta. 1991 Aug 23;1059(2):189–207. doi: 10.1016/s0005-2728(05)80204-x. [DOI] [PubMed] [Google Scholar]
- Puustinen A., Finel M., Haltia T., Gennis R. B., Wikström M. Properties of the two terminal oxidases of Escherichia coli. Biochemistry. 1991 Apr 23;30(16):3936–3942. doi: 10.1021/bi00230a019. [DOI] [PubMed] [Google Scholar]
- Puustinen A., Finel M., Virkki M., Wikström M. Cytochrome o (bo) is a proton pump in Paracoccus denitrificans and Escherichia coli. FEBS Lett. 1989 Jun 5;249(2):163–167. doi: 10.1016/0014-5793(89)80616-7. [DOI] [PubMed] [Google Scholar]
- Puustinen A., Wikström M. The heme groups of cytochrome o from Escherichia coli. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6122–6126. doi: 10.1073/pnas.88.14.6122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salerno J. C., Bolgiano B., Ingledew W. J. Potentiometric titration of cytochrome-bo type quinol oxidase of Escherichia coli: evidence for heme-heme and copper-heme interaction. FEBS Lett. 1989 Apr 10;247(1):101–105. doi: 10.1016/0014-5793(89)81249-9. [DOI] [PubMed] [Google Scholar]
- Salerno J. C., Bolgiano B., Poole R. K., Gennis R. B., Ingledew W. J. Heme-copper and heme-heme interactions in the cytochrome bo-containing quinol oxidase of Escherichia coli. J Biol Chem. 1990 Mar 15;265(8):4364–4368. [PubMed] [Google Scholar]
- Sharonov Y. A., Sharonova N. A., Figlovsky V. A., Grigorjev V. A. A comparison of the heme electronic states in equilibrium and nonequilibrium protein conformations of high-spin ferrous hemoproteins. Low temperature magnetic circular dichroism studies. Biochim Biophys Acta. 1982 Dec 20;709(2):332–341. doi: 10.1016/0167-4838(82)90476-9. [DOI] [PubMed] [Google Scholar]
- Silk S. T., Wong K. T., Marcus A. J. Arachidonic acid releasing activity in platelet membranes: effects of sulfhydryl-modifying reagents. Biochemistry. 1981 Jan 20;20(2):391–397. doi: 10.1021/bi00505a026. [DOI] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Spiro S., Guest J. R. Adaptive responses to oxygen limitation in Escherichia coli. Trends Biochem Sci. 1991 Aug;16(8):310–314. doi: 10.1016/0968-0004(91)90125-f. [DOI] [PubMed] [Google Scholar]
- Stevens T. H., Bocian D. F., Chan S. I. EPR studies of 15NO-ferrocytochrome alpha3 in cytochrome c oxidase. FEBS Lett. 1979 Jan 15;97(2):314–316. doi: 10.1016/0014-5793(79)80110-6. [DOI] [PubMed] [Google Scholar]
- Thomson A. J., Johnson M. K. Magnetization curves of haemoproteins measured by low-temperature magnetic-circular-dichroism spectroscopy. Biochem J. 1980 Nov 1;191(2):411–420. doi: 10.1042/bj1910411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trittelvitz E., Sick H., Gersonde K. Conformational isomers of nitrosyl-haemoglobin. An electron-spin-resonance study. Eur J Biochem. 1972 Dec 18;31(3):578–584. doi: 10.1111/j.1432-1033.1972.tb02568.x. [DOI] [PubMed] [Google Scholar]
- Wilson M. T., Brunori M., Rotilio G. C., Antonini E. Properties of modified cytochromes. II. Ligand binding to reduced carboxymethyl cytochrome c. J Biol Chem. 1973 Dec 10;248(23):8162–8169. [PubMed] [Google Scholar]
- Withers H. K., Bragg P. D. Potentiometric and spectroscopic properties of the cytochrome o complex of Escherichia coli. Biochem Cell Biol. 1990 Jan;68(1):83–90. doi: 10.1139/o90-010. [DOI] [PubMed] [Google Scholar]
- Yu C. A., Yu L. Syntheses of biologically active ubiquinone derivatives. Biochemistry. 1982 Aug 17;21(17):4096–4101. doi: 10.1021/bi00260a028. [DOI] [PubMed] [Google Scholar]
