Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Feb 1;289(Pt 3):743–749. doi: 10.1042/bj2890743

Formation of peroxides in amino acids and proteins exposed to oxygen free radicals.

S Gebicki 1, J M Gebicki 1
PMCID: PMC1132237  PMID: 8435071

Abstract

Dilute aqueous solutions of BSA or lysozyme gave positive tests for peroxides after exposure to reactive oxygen species. The reactive species were generated by gamma-irradiation, reduction of H2O2 with Fe2+ ions or thermal decomposition of an azo compound. Peroxides were assayed by an iodometric method. Identification of the new groups as hydroperoxides was confirmed by their ability to oxidize a range of compounds and by the kinetics of their reaction with iodide. The hydroperoxide groups were bound to the proteins and their yields (G values) corresponded to 1.2 -OOH groups per 100 eV of radiation energy absorbed for BSA, and 0.8 for lysozyme. The oxygen free radicals effective in protein peroxidation were the hydroxyl and organic peroxyl, but not superoxide or its protonated form. The efficiency of BSA peroxidation initiated by the hydroxyl radicals was 40%. Protein peroxides decayed spontaneously with a half-life of about 1.5 days at 20 degrees C. Exposure of the common amino acids to hydroxyl free radicals showed that six of them (glutamate, isoleucine, leucine, lysine, proline and valine) were peroxidized with similar efficiency to the proteins, whereas the rest were inert or much less susceptible. These results suggest that some proteins may be peroxidized by a variety of agents in vivo and that their subsequent reactions with protective agents, such as ascorbate or glutathione, may decrease the antioxidant potential of cells and tissues.

Full text

PDF
743

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amici A., Levine R. L., Tsai L., Stadtman E. R. Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal-catalyzed oxidation reactions. J Biol Chem. 1989 Feb 25;264(6):3341–3346. [PubMed] [Google Scholar]
  2. Babiy A. V., Gebicki J. M., Sullivan D. R. Vitamin E content and low density lipoprotein oxidizability induced by free radicals. Atherosclerosis. 1990 Apr;81(3):175–182. doi: 10.1016/0021-9150(90)90064-p. [DOI] [PubMed] [Google Scholar]
  3. Davies K. J., Delsignore M. E., Lin S. W. Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J Biol Chem. 1987 Jul 15;262(20):9902–9907. [PubMed] [Google Scholar]
  4. Davies K. J., Delsignore M. E. Protein damage and degradation by oxygen radicals. III. Modification of secondary and tertiary structure. J Biol Chem. 1987 Jul 15;262(20):9908–9913. [PubMed] [Google Scholar]
  5. Davies K. J., Lin S. W., Pacifici R. E. Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein. J Biol Chem. 1987 Jul 15;262(20):9914–9920. [PubMed] [Google Scholar]
  6. Davies K. J. Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem. 1987 Jul 15;262(20):9895–9901. [PubMed] [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Emini E. A., Hughes J. V., Perlow D. S., Boger J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol. 1985 Sep;55(3):836–839. doi: 10.1128/jvi.55.3.836-839.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frei B., England L., Ames B. N. Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6377–6381. doi: 10.1073/pnas.86.16.6377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GARRISON W. M., JAYKO M. E., BENNETT W. Radiation-induced oxidation of protein in aqueous solution. Radiat Res. 1962 Apr;16:483–502. [PubMed] [Google Scholar]
  11. Grant A. J., Jessup W., Dean R. T. Accelerated endocytosis and incomplete catabolism of radical-damaged protein. Biochim Biophys Acta. 1992 Apr 7;1134(3):203–209. doi: 10.1016/0167-4889(92)90177-d. [DOI] [PubMed] [Google Scholar]
  12. Gutteridge J. M., Wilkins S. Copper salt-dependent hydroxyl radical formation. Damage to proteins acting as antioxidants. Biochim Biophys Acta. 1983 Aug 23;759(1-2):38–41. doi: 10.1016/0304-4165(83)90186-1. [DOI] [PubMed] [Google Scholar]
  13. Halliwell B. Albumin--an important extracellular antioxidant? Biochem Pharmacol. 1988 Feb 15;37(4):569–571. doi: 10.1016/0006-2952(88)90126-8. [DOI] [PubMed] [Google Scholar]
  14. Halliwell B., Gutteridge J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85. doi: 10.1016/0076-6879(90)86093-b. [DOI] [PubMed] [Google Scholar]
  15. Hicks M., Gebicki J. M. A spectrophotometric method for the determination of lipid hydroperoxides. Anal Biochem. 1979 Nov 1;99(2):249–253. doi: 10.1016/s0003-2697(79)80003-2. [DOI] [PubMed] [Google Scholar]
  16. Hunt J. V., Simpson J. A., Dean R. T. Hydroperoxide-mediated fragmentation of proteins. Biochem J. 1988 Feb 15;250(1):87–93. doi: 10.1042/bj2500087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Levine R. L., Oliver C. N., Fulks R. M., Stadtman E. R. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2120–2124. doi: 10.1073/pnas.78.4.2120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Levine R. L. Oxidative modification of glutamine synthetase. II. Characterization of the ascorbate model system. J Biol Chem. 1983 Oct 10;258(19):11828–11833. [PubMed] [Google Scholar]
  19. Lissi E. A., Clavero N. Inactivation of lysozyme by alkylperoxyl radicals. Free Radic Res Commun. 1990;10(3):177–184. doi: 10.3109/10715769009149886. [DOI] [PubMed] [Google Scholar]
  20. Marx G., Chevion M. Site-specific modification of albumin by free radicals. Reaction with copper(II) and ascorbate. Biochem J. 1986 Jun 1;236(2):397–400. doi: 10.1042/bj2360397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. OKADA S., KRAUNZ R., GASSNER E. Radiation-induced changes in susceptibility of substrates to enzymatic degradation. Radiat Res. 1960 Jun;12:607–612. [PubMed] [Google Scholar]
  22. Oliver C. N., Ahn B. W., Moerman E. J., Goldstein S., Stadtman E. R. Age-related changes in oxidized proteins. J Biol Chem. 1987 Apr 25;262(12):5488–5491. [PubMed] [Google Scholar]
  23. Oliver C. N., Levine R. L., Stadtman E. R. A role of mixed-function oxidation reactions in the accumulation of altered enzyme forms during aging. J Am Geriatr Soc. 1987 Oct;35(10):947–956. doi: 10.1111/j.1532-5415.1987.tb02297.x. [DOI] [PubMed] [Google Scholar]
  24. Pacifici R. E., Davies K. J. Protein degradation as an index of oxidative stress. Methods Enzymol. 1990;186:485–502. doi: 10.1016/0076-6879(90)86143-j. [DOI] [PubMed] [Google Scholar]
  25. ROMANI R. J., TAPPEL A. L. Irradiation of egg albumin solutions under anaerobic conditions. Radiat Res. 1960 May;12:526–531. [PubMed] [Google Scholar]
  26. Schuessler H., Herget A. Oxygen effect in the radiolysis of proteins. I. Lactate dehydrogenase. Int J Radiat Biol Relat Stud Phys Chem Med. 1980 Jan;37(1):71–80. doi: 10.1080/09553008014550071. [DOI] [PubMed] [Google Scholar]
  27. Schuessler H., Schilling K. Oxygen effect in the radiolysis of proteins. Part 2. Bovine serum albumin. Int J Radiat Biol Relat Stud Phys Chem Med. 1984 Mar;45(3):267–281. doi: 10.1080/09553008414550381. [DOI] [PubMed] [Google Scholar]
  28. Simpson J. A., Narita S., Gieseg S., Gebicki S., Gebicki J. M., Dean R. T. Long-lived reactive species on free-radical-damaged proteins. Biochem J. 1992 Mar 15;282(Pt 3):621–624. doi: 10.1042/bj2820621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
  30. Thomas S. M., Jessup W., Gebicki J. M., Dean R. T. A continuous-flow automated assay for iodometric estimation of hydroperoxides. Anal Biochem. 1989 Feb 1;176(2):353–359. doi: 10.1016/0003-2697(89)90322-9. [DOI] [PubMed] [Google Scholar]
  31. Wayner D. D., Burton G. W., Ingold K. U., Barclay L. R., Locke S. J. The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophys Acta. 1987 Jun 22;924(3):408–419. doi: 10.1016/0304-4165(87)90155-3. [DOI] [PubMed] [Google Scholar]
  32. Wolff S. P., Dean R. T. Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymic hydrolysis. Biochem J. 1986 Mar 1;234(2):399–403. doi: 10.1042/bj2340399. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES