Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Feb 1;289(Pt 3):751–756. doi: 10.1042/bj2890751

Sodium-dependent co-transported analogues of glucose stimulate ornithine decarboxylase mRNA expression in LLC-PK1 cells.

R C Benis 1, D W Lundgren 1
PMCID: PMC1132238  PMID: 8435072

Abstract

Non-metabolizable analogues of glucose, including 1-O-methyl alpha-D-glucopyranoside (alpha MDG), that are co-transported with Na+ increase the specific activity of ornithine decarboxylase (ODC) in LLC-PK1 cells [Lundgren and Vacca (1990) Am. J. Physiol. 259, C647-C653]. The present study examines the effect of alpha MDG on LLC-PK1-cell ODC mRNA expression. The relative concentration of ODC mRNA in cells incubated in Earle's balanced salts solution minus glucose (EBSS--G) plus 3 mM alpha MDG was 5-6-fold higher than the concentration of ODC mRNA in cells incubated in either EBSS--G alone or in EBSS--G plus 3 mM 3-O-methyl-D-glucopyranose, a non-metabolizable analogue of glucose that is taken up by a passive carrier-mediated glucose transporter. Actinomycin D and cycloheximide completely blocked the increase in ODC activity induced by alpha MDG. Actinomycin D was also a potent inhibitor of ODC mRNA expression by alpha MDG. Cycloheximide had very little effect on the ability of this sugar to increase ODC mRNA. The relative concentration of ODC mRNA increased as a function of the incubation time in EBSS--G plus alpha MDG. The amount of ODC mRNA also increased as a function of the concentration of alpha MDG in EBSS--G. The addition of phlorizin (100 microM) to EBSS--G prevented alpha MDG from increasing ODC mRNA in LLC-PK1 cells. Phlorizin did not prevent phorbol 12-myristate 13-acetate (PMA) from enhancing LLC-PK1-cell ODC mRNA expression. The positive effect of both alpha MDG and TPA on ODC mRNA expression was suppressed when cells were incubated in hypertonic EBSS--G. From these results it is suggested that the uptake of Na(+)-dependent cotransported sugars increase ODC activity by enhancing ODC gene transcription and that this process may be dependent on cell volume expansion.

Full text

PDF
751

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachrach U. Metabolism of polyamines by cultured glioma cells. Effect of asparagine on gamma-aminobutyric acid concentrations. Biochem J. 1980 May 15;188(2):387–392. doi: 10.1042/bj1880387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bedford M. R., Smith T. K., Summers J. D. Regulation of polyamine synthesis by dietary alpha-aminoisobutyric acid and ornithine. Proc Soc Exp Biol Med. 1988 Sep;188(4):509–514. doi: 10.3181/00379727-188-42770. [DOI] [PubMed] [Google Scholar]
  3. Butler A. P., Mar P. K., McDonald F. F., Ramsay R. L. Involvement of protein kinase C in the regulation of ornithine decarboxylase mRNA by phorbol esters in rat hepatoma cells. Exp Cell Res. 1991 May;194(1):56–61. doi: 10.1016/0014-4827(91)90129-i. [DOI] [PubMed] [Google Scholar]
  4. Chen K. Y., Canellakis E. S. Enzyme regulation in neuroblastoma cells in a salts/glucose medium: induction of ornithine decarboxylase by asparagine and glutamine. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3791–3795. doi: 10.1073/pnas.74.9.3791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Costa M., Meloni M., Jones M. K. Regulation of ornithine decarboxylase activity by amino acids, cyclic AMP and luteinizing hormone in cultured mammalian cells. Biochim Biophys Acta. 1980 Jul 29;608(2):398–408. doi: 10.1016/0005-2787(80)90185-9. [DOI] [PubMed] [Google Scholar]
  6. Feinstein S. C., Dana S. L., McConlogue L., Shooter E. M., Coffino P. Nerve growth factor rapidly induces ornithine decarboxylase mRNA in PC12 rat pheochromocytoma cells. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5761–5765. doi: 10.1073/pnas.82.17.5761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ginty D. D., Marlowe M., Pekala P. H., Seidel E. R. Multiple pathways for the regulation of ornithine decarboxylase in intestinal epithelial cells. Am J Physiol. 1990 Mar;258(3 Pt 1):G454–G460. doi: 10.1152/ajpgi.1990.258.3.G454. [DOI] [PubMed] [Google Scholar]
  8. Hallbrucker C., Lang F., Gerok W., Häussinger D. Cell swelling increases bile flow and taurocholate excretion into bile in isolated perfused rat liver. Biochem J. 1992 Feb 1;281(Pt 3):593–595. doi: 10.1042/bj2810593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hogan B. L., Murden S. Effect of growth conditions on the activity of ornithine decarboxylase in cultured hepatoma cells. I. Effect of amino acid supply. J Cell Physiol. 1974 Jun;83(3):345–351. doi: 10.1002/jcp.1040830304. [DOI] [PubMed] [Google Scholar]
  10. Häussinger D., Hallbrucker C., vom Dahl S., Decker S., Schweizer U., Lang F., Gerok W. Cell volume is a major determinant of proteolysis control in liver. FEBS Lett. 1991 May 20;283(1):70–72. doi: 10.1016/0014-5793(91)80556-i. [DOI] [PubMed] [Google Scholar]
  11. Kanamoto R., Boyle S. M., Oka T., Hayashi S. Molecular mechanisms of the synergistic induction of ornithine decarboxylase by asparagine and glucagon in primary cultured hepatocytes. J Biol Chem. 1987 Oct 25;262(30):14801–14805. [PubMed] [Google Scholar]
  12. Katz A., Kahana C. Transcriptional activation of mammalian ornithine decarboxylase during stimulated growth. Mol Cell Biol. 1987 Jul;7(7):2641–2643. doi: 10.1128/mcb.7.7.2641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kay J. E., Lindsay V. J., Cooke A. Ornithine decarboxylase in phytohaemagglutinin stimulated lymphocytes: Control of degradation rate by amino acids. FEBS Lett. 1972 Mar 15;21(2):123–126. doi: 10.1016/0014-5793(72)80118-2. [DOI] [PubMed] [Google Scholar]
  14. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  15. Lundgren D. W. Effect of hypotonic stress on ornithine decarboxylase mRNA expression in cultured cells. J Biol Chem. 1992 Apr 5;267(10):6841–6847. [PubMed] [Google Scholar]
  16. Lundgren D. W., Prokay S. L. Glucose elevates ornithine decarboxylase expression in Vero cells. J Cell Physiol. 1988 Dec;137(3):469–475. doi: 10.1002/jcp.1041370311. [DOI] [PubMed] [Google Scholar]
  17. Lundgren D. W., Vacca C. V. Nonmetabolizable glucose analogues and ornithine decarboxylase expression in LLC-PK1 cells. Am J Physiol. 1990 Oct;259(4 Pt 1):C647–C653. doi: 10.1152/ajpcell.1990.259.4.C647. [DOI] [PubMed] [Google Scholar]
  18. McConlogue L., Gupta M., Wu L., Coffino P. Molecular cloning and expression of the mouse ornithine decarboxylase gene. Proc Natl Acad Sci U S A. 1984 Jan;81(2):540–544. doi: 10.1073/pnas.81.2.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Poulin R., Wechter R. S., Pegg A. E. An early enlargement of the putrescine pool is required for growth in L1210 mouse leukemia cells under hypoosmotic stress. J Biol Chem. 1991 Apr 5;266(10):6142–6151. [PubMed] [Google Scholar]
  20. Rinehart C. A., Jr, Viceps-Madore D., Fong W. F., Ortiz J. G., Canellakis E. S. The effect of transport system A and N amino acids and of nerve and epidermal growth factors on the induction of ornithine decarboxylase activity. J Cell Physiol. 1985 Jun;123(3):435–441. doi: 10.1002/jcp.1041230321. [DOI] [PubMed] [Google Scholar]
  21. Scalabrino G., Lorenzini E. C., Ferioli M. E. Polyamines and mammalian hormones. Part I: Biosynthesis, interconversion and hormone effects. Mol Cell Endocrinol. 1991 May;77(1-3):1–35. doi: 10.1016/0303-7207(91)90056-x. [DOI] [PubMed] [Google Scholar]
  22. Scalabrino G., Lorenzini E. C. Polyamines and mammalian hormones. Part II: Paracrine signals and intracellular regulators. Mol Cell Endocrinol. 1991 May;77(1-3):37–56. doi: 10.1016/0303-7207(91)90057-y. [DOI] [PubMed] [Google Scholar]
  23. Sistonen L., Hölttä E., Lehväslaiho H., Lehtola L., Alitalo K. Activation of the neu tyrosine kinase induces the fos/jun transcription factor complex, the glucose transporter and ornithine decarboxylase. J Cell Biol. 1989 Nov;109(5):1911–1919. doi: 10.1083/jcb.109.5.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weiss E. R., Cook J. S. Separation of hexose-transporting from nontransporting LLC-PK1 cells on density gradients. Am J Physiol. 1986 Feb;250(2 Pt 1):C199–C206. doi: 10.1152/ajpcell.1986.250.2.C199. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES