Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Feb 1;289(Pt 3):815–820. doi: 10.1042/bj2890815

Kinetic selectivity of cholinephosphotransferase in mouse liver: the Km for CDP-choline depends on diacylglycerol structure.

C R Mantel 1, A R Schulz 1, K Miyazawa 1, H E Broxmeyer 1
PMCID: PMC1132249  PMID: 8382052

Abstract

The effects of different 1,2-diacyl-sn-glycerols on the kinetic properties of CDP-choline:1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2) from mouse liver microsomes have been studied. Initial-velocity experiments were carried out with various concentrations of several species of diacylglycerol at different fixed concentrations of CDP-choline. Kinetic analysis of these data showed a family of intersecting lines consistent with a sequential kinetic mechanism of catalysis. The Km and Vmax. values derived from rate data revealed a pronounced effect of diacylglycerol species utilization on the Km value for CDP-choline. There was a biphasic relationship between diacylglycerol chain length and the Km for CDP-choline. Substitution of an unsaturated fatty acid in the sn-2 position of distearin also dramatically increased the CDP-choline Km value as well as the Vmax. 1,2-Dipalmitoyl-sn-glycerol was the preferred substrate over other disaturated species, but 1,2-dihexanoyl-sn-glycerol could not be utilized. These results demonstrate the kinetic mechanism of in vitro catalysis and suggest a regulatory role for CDP-choline concentration in the diacylglycerol species selectivity of cholinephosphotransferase resulting in the de novo biosynthesis of different molecular species of phosphatidylcholine.

Full text

PDF
815

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur G., Choy P. C. Acyl specificity of hamster heart CDP-choline 1,2-diacylglycerol phosphocholine transferase in phosphatidylcholine biosynthesis. Biochim Biophys Acta. 1984 Sep 12;795(2):221–229. doi: 10.1016/0005-2760(84)90069-9. [DOI] [PubMed] [Google Scholar]
  2. Bankaitis V. A., Aitken J. R., Cleves A. E., Dowhan W. An essential role for a phospholipid transfer protein in yeast Golgi function. Nature. 1990 Oct 11;347(6293):561–562. doi: 10.1038/347561a0. [DOI] [PubMed] [Google Scholar]
  3. Bell R. M., Coleman R. A. Enzymes of glycerolipid synthesis in eukaryotes. Annu Rev Biochem. 1980;49:459–487. doi: 10.1146/annurev.bi.49.070180.002331. [DOI] [PubMed] [Google Scholar]
  4. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. III. Prediction of initial velocity and inhibition patterns by inspection. Biochim Biophys Acta. 1963 Feb 12;67:188–196. doi: 10.1016/0006-3002(63)91816-x. [DOI] [PubMed] [Google Scholar]
  5. Cantley L. C., Auger K. R., Carpenter C., Duckworth B., Graziani A., Kapeller R., Soltoff S. Oncogenes and signal transduction. Cell. 1991 Jan 25;64(2):281–302. doi: 10.1016/0092-8674(91)90639-g. [DOI] [PubMed] [Google Scholar]
  6. Chapman D., Gómez-Fernández J. C., Goñi F. M. Intrinsic protein--lipid interactions. Physical and biochemical evidence. FEBS Lett. 1979 Feb 15;98(2):211–223. doi: 10.1016/0014-5793(79)80186-6. [DOI] [PubMed] [Google Scholar]
  7. Choy P. C., Lim P. H., Vance D. E. Purification and characterization of CTP: cholinephosphate cytidylytransferase from rat liver cytosol. J Biol Chem. 1977 Nov 10;252(21):7673–7677. [PubMed] [Google Scholar]
  8. Cleves A. E., McGee T. P., Whitters E. A., Champion K. M., Aitken J. R., Dowhan W., Goebl M., Bankaitis V. A. Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell. 1991 Feb 22;64(4):789–800. doi: 10.1016/0092-8674(91)90508-v. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coleman R., Bell R. M. Phospholipid synthesis in isolated fat cells. Studies of microsomal diacylglycerol cholinephosphotransferase and diacylglycerol ethanolaminephosphotransferase activities. J Biol Chem. 1977 May 10;252(9):3050–3056. [PubMed] [Google Scholar]
  10. Crecelius C. A., Longmore W. J. A study of the molecular species of diacylglycerol, phosphatidylcholine and phosphatidylethanolamine and of cholinephosphotransferase and ethanolaminephosphotransferase activities in the type II pneumocyte. Biochim Biophys Acta. 1984 Sep 12;795(2):247–256. doi: 10.1016/0005-2760(84)90072-9. [DOI] [PubMed] [Google Scholar]
  11. Exton J. H. Signaling through phosphatidylcholine breakdown. J Biol Chem. 1990 Jan 5;265(1):1–4. [PubMed] [Google Scholar]
  12. García de Herreros A., Dominguez I., Diaz-Meco M. T., Graziani G., Cornett M. E., Guddal P. H., Johansen T., Moscat J. Requirement of phospholipase C-catalyzed hydrolysis of phosphatidylcholine for maturation of Xenopus laevis oocytes in response to insulin and ras p21. J Biol Chem. 1991 Apr 15;266(11):6825–6829. [PubMed] [Google Scholar]
  13. Gennis R. B. Protein-lipid interactions. Annu Rev Biophys Bioeng. 1977;6:195–238. doi: 10.1146/annurev.bb.06.060177.001211. [DOI] [PubMed] [Google Scholar]
  14. George T. P., Cook H. W., Byers D. M., Palmer F. B., Spence M. W. Channeling of intermediates in the CDP-choline pathway of phosphatidylcholine biosynthesis in cultured glioma cells is dependent on intracellular Ca2+. J Biol Chem. 1991 Jul 5;266(19):12419–12423. [PubMed] [Google Scholar]
  15. George T. P., Morash S. C., Cook H. W., Byers D. M., Palmer F. B., Spence M. W. Phosphatidylcholine biosynthesis in cultured glioma cells: evidence for channeling of intermediates. Biochim Biophys Acta. 1989 Aug 22;1004(3):283–291. doi: 10.1016/0005-2760(89)90075-1. [DOI] [PubMed] [Google Scholar]
  16. Goracci G., Gresele P., Arienti G., Porrovecchio P., Nenci G. G., Porcellati G. Cholinephosphotransferase activity in human platelets. Lipids. 1983 Mar;18(3):179–185. doi: 10.1007/BF02534545. [DOI] [PubMed] [Google Scholar]
  17. Hjelmstad R. H., Bell R. M. sn-1,2-diacylglycerol choline- and ethanolaminephosphotransferases in Saccharomyces cerevisiae. Mixed micellar analysis of the CPT1 and EPT1 gene products. J Biol Chem. 1991 Mar 5;266(7):4357–4365. [PubMed] [Google Scholar]
  18. Holub B. J. Differential utilization of 1-palmitoyl and 1-stearoyl homologues of various unsaturated 1,2-diacyl-sn-glycerols for phosphatidylcholine and phosphatidylethanolamine synthesis in rat liver microsomes. J Biol Chem. 1978 Feb 10;253(3):691–696. [PubMed] [Google Scholar]
  19. Infante J. P., Kinsella J. E. A novel method for determining equilibrium constants. CTP:phosphorylcholine cytidyltransferase. Biochim Biophys Acta. 1978 Oct 12;526(2):440–449. doi: 10.1016/0005-2744(78)90135-3. [DOI] [PubMed] [Google Scholar]
  20. Kanoh H., Ohno K. Solubilization and purification of rat liver microsomal 1,2-diacylglycerol: CDP-choline cholinephosphotransferase and 1,2-diacylglycerol: CDP-ethanolamine ethanolaminephosphotransferase. Eur J Biochem. 1976 Jun 15;66(1):201–210. doi: 10.1111/j.1432-1033.1976.tb10440.x. [DOI] [PubMed] [Google Scholar]
  21. Kanoh H., Ohno K. Substrate-selectivity of rat liver microsomal 1,2-diacylglycerol: CDP-choline(ethanolamine) choline(ethanolamine)phosphotransferase in utilizing endogenous substrates. Biochim Biophys Acta. 1975 Feb 20;380(2):199–207. [PubMed] [Google Scholar]
  22. Lacal J. C., Moscat J., Aaronson S. A. Novel source of 1,2-diacylglycerol elevated in cells transformed by Ha-ras oncogene. Nature. 1987 Nov 19;330(6145):269–272. doi: 10.1038/330269a0. [DOI] [PubMed] [Google Scholar]
  23. Lopez-Barahona M., Kaplan P. L., Cornet M. E., Diaz-Meco M. T., Larrodera P., Diaz-Laviada I., Municio A. M., Moscat J. Kinetic evidence of a rapid activation of phosphatidylcholine hydrolysis by Ki-ras oncogene. Possible involvement in late steps of the mitogenic cascade. J Biol Chem. 1990 Jun 5;265(16):9022–9026. [PubMed] [Google Scholar]
  24. Macara I. G. Elevated phosphocholine concentration in ras-transformed NIH 3T3 cells arises from increased choline kinase activity, not from phosphatidylcholine breakdown. Mol Cell Biol. 1989 Jan;9(1):325–328. doi: 10.1128/mcb.9.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marshall C. J. How does p21ras transform cells? Trends Genet. 1991 Mar;7(3):91–95. doi: 10.1016/0168-9525(91)90278-X. [DOI] [PubMed] [Google Scholar]
  26. Miller J. C., Weinhold P. A. Cholinephosphotransferase in rat lung. The in vitro synthesis of dipalmitoylphosphatidylcholine from dipalmitoylglycerol. J Biol Chem. 1981 Dec 25;256(24):12662–12665. [PubMed] [Google Scholar]
  27. Morimoto K., Kanoh H. Acyl chain length dependency of diacylglycerol cholinephosphotransferase and diacylglycerol ethanolaminephosphotransferase. Effect of different saturated fatty acids at the C-1 or C-2 position of diacylglycerol on solubilized rat liver microsomal enzymes. J Biol Chem. 1978 Jul 25;253(14):5056–5060. [PubMed] [Google Scholar]
  28. Pelech S. L., Vance D. E. Regulation of phosphatidylcholine biosynthesis. Biochim Biophys Acta. 1984 Jun 25;779(2):217–251. doi: 10.1016/0304-4157(84)90010-8. [DOI] [PubMed] [Google Scholar]
  29. Pontoni G., Manna C., Salluzzo A., del Piano L., Galletti P., De Rosa M., Zappia V. Studies on enzyme-substrate interactions of cholinephosphotransferase from rat liver. Biochim Biophys Acta. 1985 Sep 11;836(2):222–232. doi: 10.1016/0005-2760(85)90070-0. [DOI] [PubMed] [Google Scholar]
  30. Post M., Barsoumian A., Smith B. T. The cellular mechanism of glucocorticoid acceleration of fetal lung maturation. Fibroblast-pneumonocyte factor stimulates choline-phosphate cytidylyltransferase activity. J Biol Chem. 1986 Feb 15;261(5):2179–2184. [PubMed] [Google Scholar]
  31. Price B. D., Morris J. D., Marshall C. J., Hall A. Stimulation of phosphatidylcholine hydrolysis, diacylglycerol release, and arachidonic acid production by oncogenic ras is a consequence of protein kinase C activation. J Biol Chem. 1989 Oct 5;264(28):16638–16643. [PubMed] [Google Scholar]
  32. Teegarden D., Taparowsky E. J., Kent C. Altered phosphatidylcholine metabolism in C3H10T1/2 cells transfected with the Harvey-ras oncogene. J Biol Chem. 1990 Apr 15;265(11):6042–6047. [PubMed] [Google Scholar]
  33. Van Heusden G. P., Van den Bosch H. Utilization of disaturated and unsaturated phosphatidylcholine and diacylglycerols by cholinephosphotransferase in rat lung microsomes. Biochim Biophys Acta. 1982 May 13;711(2):361–368. doi: 10.1016/0005-2760(82)90046-7. [DOI] [PubMed] [Google Scholar]
  34. Vance D. E. Boehringer Mannheim Award lecture. Phosphatidylcholine metabolism: masochistic enzymology, metabolic regulation, and lipoprotein assembly. Biochem Cell Biol. 1990 Oct;68(10):1151–1165. doi: 10.1139/o90-172. [DOI] [PubMed] [Google Scholar]
  35. Warden C. H., Friedkin M. Regulation of choline kinase activity and phosphatidylcholine biosynthesis by mitogenic growth factors in 3T3 fibroblasts. J Biol Chem. 1985 May 25;260(10):6006–6011. [PubMed] [Google Scholar]
  36. Warden C. H., Friedkin M. Regulation of phosphatidylcholine biosynthesis by mitogenic growth factors. Biochim Biophys Acta. 1984 Mar 7;792(3):270–280. doi: 10.1016/0005-2760(84)90194-2. [DOI] [PubMed] [Google Scholar]
  37. Welch G. R., Keleti T., Vértessy B. The control of cell metabolism for homogeneous vs. heterogeneous enzyme systems. J Theor Biol. 1988 Feb 21;130(4):407–422. doi: 10.1016/s0022-5193(88)80206-6. [DOI] [PubMed] [Google Scholar]
  38. Wright T. M., Shin H. S., Raben D. M. Sustained increase in 1,2-diacylglycerol precedes DNA synthesis in epidermal-growth-factor-stimulated fibroblasts. Evidence for stimulated phosphatidylcholine hydrolysis. Biochem J. 1990 Apr 15;267(2):501–507. doi: 10.1042/bj2670501. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES