Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Feb 1;289(Pt 3):919–926. doi: 10.1042/bj2890919

Involvement of calcium in modulation of neutrophil function by phorbol esters that activate protein kinase C isotypes and related enzymes.

J E Merritt 1, K E Moores 1, A T Evans 1, P Sharma 1, F J Evans 1, C H MacPhee 1
PMCID: PMC1132263  PMID: 8435086

Abstract

In this study, the effects of a series of phorbol esters with different spectra of biological activities and different patterns of activation of the isoenzymes of protein kinase C (PKC) have been studied in human neutrophils. The aim was to gain more information on which isoenzymes of PKC are involved in neutrophil activation, specifically inhibition of fMet-Leu-Phe (fMLP)-stimulated bivalent cation influx and stimulation of O2-. release (either alone or potentiation of the response to fMLP). Prior addition of both phorbol 12-myristate 13-acetate (PMA) and sapintoxin A (SAPA) inhibited fMLP-stimulated Mn2+ influx. Higher concentrations of resiniferatoxin (RX) were also inhibitory, inhibition being more apparent at longer preincubation times. However, 12-deoxyphorbol 13-O-phenylacetate (DOPPA) showed only a slight inhibitory effect and required a prolonged preincubation. PMA, SAPA and RX, but not DOPPA, stimulated O2-. release by themselves. Lower concentrations of PMA, SAPA and RX, which were ineffective alone, considerably potentiated O2-. release stimulated by fMLP, whereas DOPPA had little or no effect. These results rule out a major role for PKC-delta (not activated by SAPA) and PKC-beta 1 (activated by DOPPA), but suggest the involvement of RX kinase in addition to PKC in the inhibition of fMLP-stimulated Mn2+ influx and potentiation of fMLP-stimulated O2-. release. However, when the cytosolic free Ca2+ concentration ([Ca2+]i) was elevated with the Ca2+ ionophore ionomycin, DOPPA was able to stimulate O2-. release, which probably reflects the known Ca2+ requirement for activation of PKC-beta 1 by DOPPA in vitro. The effects of the other phorbols were also enhanced when [Ca2+]i was elevated; all of the phorbols synergize, to variable extents, with Ca2+ to activate PKC in vitro. Enhancement of RX-stimulated O2- release by elevation of [Ca2+]i was unexpected, since RX kinase has been reported to be inhibited by high concentrations of Ca2+ in vitro. Finally, use of fura-2 and SK&F 96365 to manipulate the fMLP-stimulated rise in [Ca2+]i showed that when fMLP was able to evoke its normal rise in [Ca2+]i (to a peak of 700-900 nM), O2-. release was potentiated by PMA, SAPA and RX. However, when fMLP was only able to evoke a small increase in [Ca2+]i (to a peak of 400 nM), potentiation by PMA was unaffected but potentiation by SAPA and RX was considerably reduced. This observation agrees with published data demonstrating that activation of PKC in vitro by SAPA is more Ca(2+)-dependent than activation by PMA.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
919

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell R. M., Burns D. J. Lipid activation of protein kinase C. J Biol Chem. 1991 Mar 15;266(8):4661–4664. [PubMed] [Google Scholar]
  2. Brooks S. F., Gordge P. C., Toker A., Evans A. T., Evans F. J., Aitken A. Platelet protein phosphorylation and protein kinase C activation by phorbol esters with different biological activity and a novel synergistic response with Ca2+ ionophore. Eur J Biochem. 1990 Mar 10;188(2):431–437. doi: 10.1111/j.1432-1033.1990.tb15420.x. [DOI] [PubMed] [Google Scholar]
  3. Cockcroft S., Barrowman M. M., Gomperts B. D. Breakdown and synthesis of polyphosphoinositides in fMetLeuPhe-stimulated neutrophils. FEBS Lett. 1985 Feb 25;181(2):259–263. doi: 10.1016/0014-5793(85)80271-4. [DOI] [PubMed] [Google Scholar]
  4. Coussens L., Parker P. J., Rhee L., Yang-Feng T. L., Chen E., Waterfield M. D., Francke U., Ullrich A. Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science. 1986 Aug 22;233(4766):859–866. doi: 10.1126/science.3755548. [DOI] [PubMed] [Google Scholar]
  5. Della Bianca V., Grzeskowiak M., Cassatella M. A., Zeni L., Rossi F. Phorbol 12, myristate 13, acetate potentiates the respiratory burst while inhibits phosphoinositide hydrolysis and calcium mobilization by formyl-methionyl-leucyl-phenylalanine in human neutrophils. Biochem Biophys Res Commun. 1986 Mar 13;135(2):556–565. doi: 10.1016/0006-291x(86)90030-6. [DOI] [PubMed] [Google Scholar]
  6. Di Virgilio F., Vicentini L. M., Treves S., Riz G., Pozzan T. Inositol phosphate formation in fMet-Leu-Phe-stimulated human neutrophils does not require an increase in the cytosolic free Ca2+ concentration. Biochem J. 1985 Jul 15;229(2):361–367. doi: 10.1042/bj2290361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Englberger W., Bitter-Suermann D., Hadding U. Influence of lysophospholipids and PAF on the oxidative burst of PMNL. Int J Immunopharmacol. 1987;9(3):275–282. doi: 10.1016/0192-0561(87)90051-8. [DOI] [PubMed] [Google Scholar]
  8. Evans A. T., Sharma P., Ryves W. J., Evans F. J. TPA and resiniferatoxin-mediated activation of NADPH-oxidase. A possible role for Rx-kinase augmentation of PKC. FEBS Lett. 1990 Jul 16;267(2):253–256. doi: 10.1016/0014-5793(90)80938-f. [DOI] [PubMed] [Google Scholar]
  9. Evans F. J., Kinghorn A. D., Schmidt R. J. Some naturally occurring skin irritants. Acta Pharmacol Toxicol (Copenh) 1975 Sep;37(3):250–256. doi: 10.1111/j.1600-0773.1975.tb00842.x. [DOI] [PubMed] [Google Scholar]
  10. Evans F. J., Parker P. J., Olivier A. R., Thomas S., Ryves W. J., Evans A. T., Gordge P., Sharma P. Phorbol ester activation of the isotypes of protein kinase C from bovine and rat brain. Biochem Soc Trans. 1991 Apr;19(2):397–402. doi: 10.1042/bst0190397. [DOI] [PubMed] [Google Scholar]
  11. Evans F. J., Schmidt R. J. An assay procedure for the comparative irritancy testing of esters in the tigliane and daphnane series. Inflammation. 1979 Jul;3(3):215–223. doi: 10.1007/BF00914178. [DOI] [PubMed] [Google Scholar]
  12. Evans F. J., Taylor S. E. Pro-inflammatory, tumour-promoting and anti-tumour diterpenes of the plant families Euphorbiaceae and Thymelaeaceae. Fortschr Chem Org Naturst. 1983;44:1–99. doi: 10.1007/978-3-7091-8714-2_1. [DOI] [PubMed] [Google Scholar]
  13. Exton J. H. Signaling through phosphatidylcholine breakdown. J Biol Chem. 1990 Jan 5;265(1):1–4. [PubMed] [Google Scholar]
  14. Farago A., Nishizuka Y. Protein kinase C in transmembrane signalling. FEBS Lett. 1990 Aug 1;268(2):350–354. doi: 10.1016/0014-5793(90)81284-u. [DOI] [PubMed] [Google Scholar]
  15. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  16. Korchak H. M., Rutherford L. E., Weissmann G. Stimulus response coupling in the human neutrophil. I. Kinetic analysis of changes in calcium permeability. J Biol Chem. 1984 Apr 10;259(7):4070–4075. [PubMed] [Google Scholar]
  17. Korchak H. M., Vienne K., Rutherford L. E., Wilkenfeld C., Finkelstein M. C., Weissmann G. Stimulus response coupling in the human neutrophil. II. Temporal analysis of changes in cytosolic calcium and calcium efflux. J Biol Chem. 1984 Apr 10;259(7):4076–4082. [PubMed] [Google Scholar]
  18. Majumdar S., Rossi M. W., Fujiki T., Phillips W. A., Disa S., Queen C. F., Johnston R. B., Jr, Rosen O. M., Corkey B. E., Korchak H. M. Protein kinase C isotypes and signaling in neutrophils. Differential substrate specificities of a translocatable calcium- and phospholipid-dependent beta-protein kinase C and a phospholipid-dependent protein kinase which is inhibited by long chain fatty acyl coenzyme A. J Biol Chem. 1991 May 15;266(14):9285–9294. [PubMed] [Google Scholar]
  19. McCarthy S. A., Hallam T. J., Merritt J. E. Activation of protein kinase C in human neutrophils attenuates agonist-stimulated rises in cytosolic free Ca2+ concentration by inhibiting bivalent-cation influx and intracellular Ca2+ release in addition to stimulating Ca2+ efflux. Biochem J. 1989 Dec 1;264(2):357–364. doi: 10.1042/bj2640357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Merritt J. E., Jacob R., Hallam T. J. Use of manganese to discriminate between calcium influx and mobilization from internal stores in stimulated human neutrophils. J Biol Chem. 1989 Jan 25;264(3):1522–1527. [PubMed] [Google Scholar]
  21. Merritt J. E., McCarthy S. A., Davies M. P., Moores K. E. Use of fluo-3 to measure cytosolic Ca2+ in platelets and neutrophils. Loading cells with the dye, calibration of traces, measurements in the presence of plasma, and buffering of cytosolic Ca2+. Biochem J. 1990 Jul 15;269(2):513–519. doi: 10.1042/bj2690513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Obel D., Rasmussen L. H., Christiansen N. O. Protein kinase C subtypes in human neutrophils. Scand J Clin Lab Invest. 1991 May;51(3):299–302. doi: 10.3109/00365519109091618. [DOI] [PubMed] [Google Scholar]
  23. Parker P. J., Coussens L., Totty N., Rhee L., Young S., Chen E., Stabel S., Waterfield M. D., Ullrich A. The complete primary structure of protein kinase C--the major phorbol ester receptor. Science. 1986 Aug 22;233(4766):853–859. doi: 10.1126/science.3755547. [DOI] [PubMed] [Google Scholar]
  24. Pontremoli S., Melloni E., Sparatore B., Michetti M., Salamino F., Horecker B. L. Isozymes of protein kinase C in human neutrophils and their modification by two endogenous proteinases. J Biol Chem. 1990 Jan 15;265(2):706–712. [PubMed] [Google Scholar]
  25. Rouy D., Anglés-Cano E. The mechanism of activation of plasminogen at the fibrin surface by tissue-type plasminogen activator in a plasma milieu in vitro. Role of alpha 2-antiplasmin. Biochem J. 1990 Oct 1;271(1):51–57. doi: 10.1042/bj2710051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ryves W. J., Evans A. T., Olivier A. R., Parker P. J., Evans F. J. Activation of the PKC-isotypes alpha, beta 1, gamma, delta and epsilon by phorbol esters of different biological activities. FEBS Lett. 1991 Aug 19;288(1-2):5–9. doi: 10.1016/0014-5793(91)80989-g. [DOI] [PubMed] [Google Scholar]
  27. Ryves W. J., Garland L. G., Evans A. T., Evans F. J. A phorbol ester and a daphnane ester stimulate a calcium-independent kinase activity from human mononuclear cells. FEBS Lett. 1989 Mar 13;245(1-2):159–163. doi: 10.1016/0014-5793(89)80212-1. [DOI] [PubMed] [Google Scholar]
  28. Sha'afi R. I., White J. R., Molski T. F., Shefcyk J., Volpi M., Naccache P. H., Feinstein M. B. Phorbol 12-myristate 13-acetate activates rabbit neutrophils without an apparent rise in the level of intracellular free calcium. Biochem Biophys Res Commun. 1983 Jul 29;114(2):638–645. doi: 10.1016/0006-291x(83)90828-8. [DOI] [PubMed] [Google Scholar]
  29. Sharma P., Evans A. T., Parker P. J., Evans F. J. NADPH-oxidase activation by protein kinase C-isotypes. Biochem Biophys Res Commun. 1991 Jun 28;177(3):1033–1040. doi: 10.1016/0006-291x(91)90642-k. [DOI] [PubMed] [Google Scholar]
  30. Stasia M. J., Strulovici B., Daniel-Issakani S., Pelosin J. M., Dianoux A. C., Chambaz E., Vignais P. V. Immunocharacterization of beta- and zeta-subspecies of protein kinase C in bovine neutrophils. FEBS Lett. 1990 Nov 12;274(1-2):61–64. doi: 10.1016/0014-5793(90)81329-m. [DOI] [PubMed] [Google Scholar]
  31. Taylor S. E., Gafur M. A., Choudhury A. K., Evans F. J. Sapintoxin A, a new biologically active nitrogen containing phorbol ester. Experientia. 1981;37(7):681–682. doi: 10.1007/BF01967918. [DOI] [PubMed] [Google Scholar]
  32. de Vries D. J., Blumberg P. M. Thermoregulatory effects of resiniferatoxin in the mouse: comparison with capsaicin. Life Sci. 1989;44(11):711–715. doi: 10.1016/0024-3205(89)90382-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES