Abstract
The Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase was strongly inhibited by CN- and N3- in a reconstituted system, but was inhibited slightly or not at all by the same reagents in intact developing chloroplasts. Known inhibitors of cytochrome P-450 processes showed no consistent effect. Benzoquinone and quinol, which can give rise to the same semiquinone by one-electron redox events, were strong inhibitors of the cyclase. It was previously shown that O2 and a source of electrons are required in the cyclization process. The substrates for the dehydrogenases of the pentose phosphate pathway (glucose 6-phosphate and 6-phosphogluconate) were effective reductants in the reconstituted system with supernatant that had been dialysed or passed through Sephadex G-50, in the absence of added NADP+. However, inhibitor studies suggested that the electrons from these sugar phosphates reached the cyclase system via NADPH. Therefore we infer the presence of protein-bound NADP+ that can be reduced by glucose 6-phosphate and 6-phosphogluconate and donate reducing equivalents to the cyclase system. This bound NADPH pool may be particularly effective in the cyclization process, owing to channeling. These findings are discussed in relation to the results of a companion paper [Whyte and Castelfranco (1993) Biochem. J. 290, 361-367] on the breakdown of chloroplast pigments in the same reconstituted system.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ben-Hayyim G., Hochman A., Avron M. Phosphoadenosine diphosphate ribose, a specific inhibitor of nicotinamide adenine dinucleotide phosphate enzymes. J Biol Chem. 1967 Jun 25;242(12):2837–2839. [PubMed] [Google Scholar]
- Bonsignore A., Lorenzoni I., Cancedda R., Morelli A., Giuliano F., De Flora A. Metabolism of human erythrocyte glucose 6-phosphate dehydrogenase. V. Exchange between free and apoenzyme-bound NADP. Ital J Biochem. 1969 Nov-Dec;18(6):439–450. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Castelfranco P. A., Weinstein J. D., Schwarcz S., Pardo A. D., Wezelman B. E. The Mg insertion step in chlorophyll biosynthesis. Arch Biochem Biophys. 1979 Feb;192(2):592–598. doi: 10.1016/0003-9861(79)90130-9. [DOI] [PubMed] [Google Scholar]
- Chereskin B. M., Castelfranco P. A. Effects of Iron and Oxygen on Chlorophyll Biosynthesis : II. OBSERVATIONS ON THE BIOSYNTHETIC PATHWAY IN ISOLATED ETIOCHLOROPLASTS. Plant Physiol. 1982 Jan;69(1):112–116. doi: 10.1104/pp.69.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chereskin B. M., Wong Y. S., Castelfranco P. A. In Vitro Synthesis of the Chlorophyll Isocyclic Ring : Transformation of Magnesium-Protoporphyrin IX and Magnesium-Protoporphyrin IX Monomethyl Ester into Magnesium-2,4-Divinyl Pheoporphyrin A(5). Plant Physiol. 1982 Oct;70(4):987–993. doi: 10.1104/pp.70.4.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuesler T. P., Wong Y. S., Castelfranco P. A. Localization of Mg-Chelatase and Mg-Protoporphyrin IX Monomethyl Ester (Oxidative) Cyclase Activities within Isolated, Developing Cucumber Chloroplasts. Plant Physiol. 1984 Jul;75(3):662–664. doi: 10.1104/pp.75.3.662. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halkier B. A., Møller B. L. Involvement of Cytochrome P-450 in the Biosynthesis of Dhurrin in Sorghum bicolor (L.) Moench. Plant Physiol. 1991 May;96(1):10–17. doi: 10.1104/pp.96.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heber U., Pon N. G., Heber M. Localization of Carboxydismutase & Triosephosphate Dehydrogenases in Chloroplasts. Plant Physiol. 1963 May;38(3):355–360. doi: 10.1104/pp.38.3.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuby S. A., Wu J. T., Roy R. N. Glucose 6-phosphate dehydrogenase from brewers' yeast (Zwischenferment). Further observations on the ligand-induced macromolecular association phenomenon: kinetic properties of the two-chain protein species; and studies on the enzyme-substrate interactions. Arch Biochem Biophys. 1974 Nov;165(1):153–178. doi: 10.1016/0003-9861(74)90153-2. [DOI] [PubMed] [Google Scholar]
- Lendzian K., Bassham J. A. Regulation of glucose-6-phosphate dehydrogenase in spinach chloroplasts by ribulose 1,5-diphosphate and NADPH/NADP+ ratios. Biochim Biophys Acta. 1975 Aug 11;396(2):260–275. doi: 10.1016/0005-2728(75)90040-7. [DOI] [PubMed] [Google Scholar]
- Levy H. R. Glucose-6-phosphate dehydrogenases. Adv Enzymol Relat Areas Mol Biol. 1979;48:97–192. doi: 10.1002/9780470122938.ch3. [DOI] [PubMed] [Google Scholar]
- López-Fanjul C., Hill W. G. Genetic differences between populations of Drosophila melanogaster for a quantitative trait. I. Laboratory populations. J Chem Soc Perkin 1. 1974;1:51–68. [PubMed] [Google Scholar]
- Mas M. T., Colman R. F. Spectroscopic studies of the interactions of coenzymes and coenzyme fragments with pig heart, oxidized triphosphopyridine nucleotide specific isocitrate dehydrogenase. Biochemistry. 1985 Mar 26;24(7):1634–1646. doi: 10.1021/bi00328a011. [DOI] [PubMed] [Google Scholar]
- Muto S., Uritani I. Glucose-6-phosphate dehydrogenase from sweet potato: substrate-induced change in the sedimentation coefficient of the enzyme. J Biochem. 1972 Jun;71(6):981–985. doi: 10.1093/oxfordjournals.jbchem.a129869. [DOI] [PubMed] [Google Scholar]
- Pardo A. D., Chereskin B. M., Castelfranco P. A., Franceschi V. R., Wezelman B. E. ATP requirement for mg chelatase in developing chloroplasts. Plant Physiol. 1980 May;65(5):956–960. doi: 10.1104/pp.65.5.956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott W. A. Physical properties of glucose 6-phosphate dehydrogenase from Neurospora crassa. J Biol Chem. 1971 Oct 25;246(20):6353–6359. [PubMed] [Google Scholar]
- Stobart A. K., Ameen-Bukhari I. Photoreduction of protochlorophyllide and its relationship to delta-aminolaevulinic acid synthesis in the leaves of dark-grown barley (Hordeum vulgare) seedlings. Biochem J. 1986 Jun 15;236(3):741–748. doi: 10.1042/bj2360741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker C. J., Castelfranco P. A., Whyte B. J. Synthesis of divinyl protochlorophyllide. Enzymological properties of the Mg-protoporphyrin IX monomethyl ester oxidative cyclase system. Biochem J. 1991 Jun 15;276(Pt 3):691–697. doi: 10.1042/bj2760691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker C. J., Mansfield K. E., Smith K. M., Castelfranco P. A. Incorporation of atmospheric oxygen into the carbonyl functionality of the protochlorophyllide isocyclic ring. Biochem J. 1989 Jan 15;257(2):599–602. doi: 10.1042/bj2570599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Werck-Reichhart D., Gabriac B., Teutsch H., Durst F. Two cytochrome P-450 isoforms catalysing O-de-ethylation of ethoxycoumarin and ethoxyresorufin in higher plants. Biochem J. 1990 Sep 15;270(3):729–735. doi: 10.1042/bj2700729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whyte B. J., Castelfranco P. A. Breakdown of thylakoid pigments by soluble proteins of developing chloroplasts. Biochem J. 1993 Mar 1;290(Pt 2):361–367. doi: 10.1042/bj2900361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong Y. S., Castelfranco P. A. Resolution and Reconstitution of Mg-Protoporphyrin IX Monomethyl Ester (Oxidative) Cyclase, the Enzyme System Responsible for the Formation of the Chlorophyll Isocyclic Ring. Plant Physiol. 1984 Jul;75(3):658–661. doi: 10.1104/pp.75.3.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yue R. H., Noltmann E. A., Kuby S. A. Glucose 6-phosphate dehydrogenase from brewers' yeast (Zwischenferment). 3. Studies on the subunit structure and on the molecular association phenomenon induced by triphosphopyridine nucleotide. J Biol Chem. 1969 Mar 10;244(5):1353–1364. [PubMed] [Google Scholar]
