Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Mar 1;290(Pt 2):375–379. doi: 10.1042/bj2900375

Transport of inorganic pyrophosphate across the spinach chloroplast envelope.

J E Lunn 1, R Douce 1
PMCID: PMC1132283  PMID: 8383964

Abstract

Spinach-leaf chloroplasts take up PPi at a rate of 1.9 mumol/h per mg of chlorophyll (Chl) in the dark and 1.6 mumol/h per mg of Chl in the light. The Km for PPi transport is 32 microM in the dark and 6 microM in the light. Uptake is inhibited by pyridoxal phosphate, 4,4'-di-isothiocyanatostilbene-2,2'-disulphonic acid and imidodiphosphate, but not by NaF or EDTA. PPi does not appear to cross the chloroplast envelope in exchange for Pi, suggesting that it is not transported by the phosphate translocator. Exchange of PPi and adenine nucleotides across the chloroplast envelope is very slow and PPi does not competitively inhibit ATP uptake, suggesting that little, if any, PPi is transported by the adenine-nucleotide translocator. These results are consistent with the presence of a specific, high-affinity PPi translocator in the spinach chloroplast envelope. It is proposed that in vivo PPi is taken up into the chloroplast from the cytosol to replenish the Pi pool in the stroma.

Full text

PDF
375

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRUINSMA J. A comment on the spectrophotometric determination of chlorophyll. Biochim Biophys Acta. 1961 Sep 30;52:576–578. doi: 10.1016/0006-3002(61)90418-8. [DOI] [PubMed] [Google Scholar]
  3. Bligny R., Gardestrom P., Roby C., Douce R. 31P NMR studies of spinach leaves and their chloroplasts. J Biol Chem. 1990 Jan 25;265(3):1319–1326. [PubMed] [Google Scholar]
  4. Dumas R., Joyard J., Douce R. Effect of sulphate on glutamate synthesis by intact spinach (Spinacia oleracea) chloroplasts. Biochem J. 1989 May 1;259(3):769–774. doi: 10.1042/bj2590769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edwards G. E., Robinson S. P., Tyler N. J., Walker D. A. Photosynthesis by isolated protoplasts, protoplast extracts, and chloroplasts of wheat: influence of orthophosphate, pyrophosphate, and adenylates. Plant Physiol. 1978 Aug;62(2):313–319. doi: 10.1104/pp.62.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fliege R., Flügge U. I., Werdan K., Heldt H. W. Specific transport of inorganic phosphate, 3-phosphoglycerate and triosephosphates across the inner membrane of the envelope in spinach chloroplasts. Biochim Biophys Acta. 1978 May 10;502(2):232–247. doi: 10.1016/0005-2728(78)90045-2. [DOI] [PubMed] [Google Scholar]
  7. Heldt H. W. Adenine nucleotide translocation in spinach chloroplasts. FEBS Lett. 1969 Sep;5(1):11–14. doi: 10.1016/0014-5793(69)80280-2. [DOI] [PubMed] [Google Scholar]
  8. Lilley R. M., Schwenn J. D., Walker D. A. Inorganic pyrophosphatase and photosynthesis by isolated chloroplasts. II. The controlling influence of orthophosphate. Biochim Biophys Acta. 1973 Dec 14;325(3):596–604. doi: 10.1016/0005-2728(73)90219-3. [DOI] [PubMed] [Google Scholar]
  9. Mourioux G., Douce R. Slow Passive Diffusion of Orthophosphate between Intact Isolated Chloroplasts and Suspending Medium. Plant Physiol. 1981 Mar;67(3):470–473. doi: 10.1104/pp.67.3.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mourioux G., Douce R. Transport du sulfate à travers la double membrane limitante, ou enveloppe, des chloroplastes d'épinard. Biochimie. 1979;61(11-12):1283–1292. [PubMed] [Google Scholar]
  11. Robinson S. P., Wiskich J. T. Inhibition of CO2 fixation by adenosine 5'-diphosphate and the role of phosphate transport in isolated pea chloroplasts. Arch Biochem Biophys. 1977 Dec;184(2):546–554. doi: 10.1016/0003-9861(77)90464-7. [DOI] [PubMed] [Google Scholar]
  12. Robinson S. P., Wiskich J. T. Pyrophosphate inhibition of carbon dioxide fixation in isolated pea chloroplasts by uptake in exchange for endogenous adenine nucleotides. Plant Physiol. 1977 Mar;59(3):422–427. doi: 10.1104/pp.59.3.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Robinson S. P., Wiskich J. T. Stimulation of carbon dioxide fixation in isolated pea chloroplasts by catalytic amounts of adenine nucleotides. Plant Physiol. 1976 Aug;58(2):156–162. doi: 10.1104/pp.58.2.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rumpho M. E., Edwards G. E., Yousif A. E., Keegstra K. Specific Labeling of the Phosphate Translocator in C(3) and C(4) Mesophyll Chloroplasts by Tritiated Dihydro-DIDS (1,2-Ditritio-1,2-[2,2' -Disulfo-4,4' -Diisothiocyano] Diphenylethane). Plant Physiol. 1988 Apr;86(4):1193–1198. doi: 10.1104/pp.86.4.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stankovic Z. S., Walker D. A. Photosynthesis by isolated pea chloroplasts: some effects of adenylates and inorganic pyrophosphate. Plant Physiol. 1977 Mar;59(3):428–432. doi: 10.1104/pp.59.3.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Woldegiorgis G., Voss S., Shrago E., Werner-Washburne M., Keegstra K. Adenine nucleotide translocase-dependent anion transport in pea chloroplasts. Biochim Biophys Acta. 1985 Dec 16;810(3):340–345. doi: 10.1016/0005-2728(85)90219-1. [DOI] [PubMed] [Google Scholar]
  17. el-Badry A. M., Bassham J. A. Chloroplast inorganic pyrophosphatase. Biochim Biophys Acta. 1970 Mar 3;197(2):308–316. doi: 10.1016/0005-2728(70)90042-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES