Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Mar 1;290(Pt 2):389–394. doi: 10.1042/bj2900389

Kinetic characterization of guanine-nucleotide-induced exocytosis from permeabilized rat mast cells.

T H Lillie 1, B D Gomperts 1
PMCID: PMC1132285  PMID: 8452525

Abstract

We have measured the time course of secretion of hexosaminidase from rat mast cells permeabilized (in simple buffered NaCl solutions) in response to guanine nucleotides [GTP or guanosine 5'-[gamma-thio]triphosphate (GTP[S])] and Ca2+. In these experiments, ATP was excluded from the system (and the cells were pretreated with metabolic inhibitors). For cells permeabilized in the absence of Mg2+ but in the presence of Ca2+, secretion commences promptly in response to addition of GTP; when Mg2+ (2 mM) is provided, secretion commences after an extended delay, much higher concentrations of GTP are required, and the final extent of secretion is decreased. Ongoing secretion due to GTP and Ca2+ is abruptly terminated by addition of Mg2+ to cells initially stimulated in its absence. In contrast, although Mg2+ has no effect on the sensitivity to the non-hydrolysable analogue GTP[S], its absence does nevertheless cause delays in the onset of secretion triggered by the addition of GTP[S] to cells initially permeabilized in the presence of Ca2+ (micromolar range, again in the absence of ATP). However, exocytosis from cells triggered with Ca2+ after permeabilization in the presence of high concentrations of GTP[S] is instantaneous. The delays due to triggering by GTP[S] have GTP[S]-concentration-dependent and -independent components. The guanine-nucleotide-concentration-dependent component is expressed as an extended duration of delay as the concentration of GTP[S] is decreased, and may reflect the binding of GTP[S] to GE. The concentration-independent component is manifested as a limiting delay which cannot be further diminished by increasing the guanine nucleotide concentration. The duration of the limiting delay is sensitive to the identity of the stimulating nucleotide (GTP < GTP[S] < p[NH]ppG) and may reflect the time taken for an activating conformational change to occur after binding. Since both components of the delays are abolished by the presence of Mg2+, both the binding of guanine nucleotide and the activation of GE appear to be Mg(2+)-dependent. We therefore conclude that nucleotide binding, activation and the GTPase activity of GE are strongly dependent on Mg2+, in common with the same three processes in Gs and Gi.

Full text

PDF
389

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abo A., Pick E., Hall A., Totty N., Teahan C. G., Segal A. W. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature. 1991 Oct 17;353(6345):668–670. doi: 10.1038/353668a0. [DOI] [PubMed] [Google Scholar]
  2. Arshavsky VYu, Bownds M. D. Regulation of deactivation of photoreceptor G protein by its target enzyme and cGMP. Nature. 1992 Jun 4;357(6377):416–417. doi: 10.1038/357416a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birnbaumer L., Abramowitz J., Brown A. M. Receptor-effector coupling by G proteins. Biochim Biophys Acta. 1990 May 7;1031(2):163–224. doi: 10.1016/0304-4157(90)90007-y. [DOI] [PubMed] [Google Scholar]
  4. Bourne H. R. Do GTPases direct membrane traffic in secretion? Cell. 1988 Jun 3;53(5):669–671. doi: 10.1016/0092-8674(88)90081-5. [DOI] [PubMed] [Google Scholar]
  5. Brandt D. R., Ross E. M. Catecholamine-stimulated GTPase cycle. Multiple sites of regulation by beta-adrenergic receptor and Mg2+ studied in reconstituted receptor-Gs vesicles. J Biol Chem. 1986 Feb 5;261(4):1656–1664. [PubMed] [Google Scholar]
  6. Burstein E. S., Macara I. G. Interactions of the ras-like protein p25rab3A with Mg2+ and guanine nucleotides. Biochem J. 1992 Mar 1;282(Pt 2):387–392. doi: 10.1042/bj2820387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chavrier P., Parton R. G., Hauri H. P., Simons K., Zerial M. Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell. 1990 Jul 27;62(2):317–329. doi: 10.1016/0092-8674(90)90369-p. [DOI] [PubMed] [Google Scholar]
  8. Churcher Y., Gomperts B. D. ATP-dependent and ATP-independent pathways of exocytosis revealed by interchanging glutamate and chloride as the major anion in permeabilized mast cells. Cell Regul. 1990 Mar;1(4):337–346. doi: 10.1091/mbc.1.4.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cockcroft S., Howell T. W., Gomperts B. D. Two G-proteins act in series to control stimulus-secretion coupling in mast cells: use of neomycin to distinguish between G-proteins controlling polyphosphoinositide phosphodiesterase and exocytosis. J Cell Biol. 1987 Dec;105(6 Pt 1):2745–2750. doi: 10.1083/jcb.105.6.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ferguson K. M., Higashijima T., Smigel M. D., Gilman A. G. The influence of bound GDP on the kinetics of guanine nucleotide binding to G proteins. J Biol Chem. 1986 Jun 5;261(16):7393–7399. [PubMed] [Google Scholar]
  11. Fernandez J. M., Neher E., Gomperts B. D. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. 1984 Nov 29-Dec 5Nature. 312(5993):453–455. doi: 10.1038/312453a0. [DOI] [PubMed] [Google Scholar]
  12. Feuerstein J., Goody R. S., Webb M. R. The mechanism of guanosine nucleotide hydrolysis by p21 c-Ha-ras. The stereochemical course of the GTPase reaction. J Biol Chem. 1989 Apr 15;264(11):6188–6190. [PubMed] [Google Scholar]
  13. Feuerstein J., Kalbitzer H. R., John J., Goody R. S., Wittinghofer A. Characterisation of the metal-ion-GDP complex at the active sites of transforming and nontransforming p21 proteins by observation of the 17O-Mn superhyperfine coupling and by kinetic methods. Eur J Biochem. 1987 Jan 2;162(1):49–55. doi: 10.1111/j.1432-1033.1987.tb10540.x. [DOI] [PubMed] [Google Scholar]
  14. Frech M., Schlichting I., Wittinghofer A., Chardin P. Guanine nucleotide binding properties of the mammalian RalA protein produced in Escherichia coli. J Biol Chem. 1990 Apr 15;265(11):6353–6359. [PubMed] [Google Scholar]
  15. Garrett M. D., Self A. J., van Oers C., Hall A. Identification of distinct cytoplasmic targets for ras/R-ras and rho regulatory proteins. J Biol Chem. 1989 Jan 5;264(1):10–13. [PubMed] [Google Scholar]
  16. Gomperts B. D. GE: a GTP-binding protein mediating exocytosis. Annu Rev Physiol. 1990;52:591–606. doi: 10.1146/annurev.ph.52.030190.003111. [DOI] [PubMed] [Google Scholar]
  17. Gomperts B. D., Tatham P. E. GTP-binding proteins in the control of exocytosis. Cold Spring Harb Symp Quant Biol. 1988;53(Pt 2):983–992. doi: 10.1101/sqb.1988.053.01.113. [DOI] [PubMed] [Google Scholar]
  18. Gomperts B. D., Tatham P. E. Regulated exocytotic secretion from permeabilized cells. Methods Enzymol. 1992;219:178–189. doi: 10.1016/0076-6879(92)19020-7. [DOI] [PubMed] [Google Scholar]
  19. Hall A., Self A. J. The effect of Mg2+ on the guanine nucleotide exchange rate of p21N-ras. J Biol Chem. 1986 Aug 25;261(24):10963–10965. [PubMed] [Google Scholar]
  20. Hall A. The cellular functions of small GTP-binding proteins. Science. 1990 Aug 10;249(4969):635–640. doi: 10.1126/science.2116664. [DOI] [PubMed] [Google Scholar]
  21. Higashijima T., Ferguson K. M., Smigel M. D., Gilman A. G. The effect of GTP and Mg2+ on the GTPase activity and the fluorescent properties of Go. J Biol Chem. 1987 Jan 15;262(2):757–761. [PubMed] [Google Scholar]
  22. Higashijima T., Ferguson K. M., Sternweis P. C., Ross E. M., Smigel M. D., Gilman A. G. The effect of activating ligands on the intrinsic fluorescence of guanine nucleotide-binding regulatory proteins. J Biol Chem. 1987 Jan 15;262(2):752–756. [PubMed] [Google Scholar]
  23. Higashijima T., Ferguson K. M., Sternweis P. C., Smigel M. D., Gilman A. G. Effects of Mg2+ and the beta gamma-subunit complex on the interactions of guanine nucleotides with G proteins. J Biol Chem. 1987 Jan 15;262(2):762–766. [PubMed] [Google Scholar]
  24. Howell T. W., Cockcroft S., Gomperts B. D. Essential synergy between Ca2+ and guanine nucleotides in exocytotic secretion from permeabilized rat mast cells. J Cell Biol. 1987 Jul;105(1):191–197. doi: 10.1083/jcb.105.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Iyengar R., Birnbaumer L. Hormone receptor modulates the regulatory component of adenylyl cyclase by reducing its requirement for Mg2+ and enhancing its extent of activation by guanine nucleotides. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5179–5183. doi: 10.1073/pnas.79.17.5179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Iyengar R. Hysteretic activation of adenylyl cyclases. II. Mg ion regulation of the activation of the regulatory component as analyzed by reconstitution. J Biol Chem. 1981 Nov 10;256(21):11042–11050. [PubMed] [Google Scholar]
  27. Kabcenell A. K., Goud B., Northup J. K., Novick P. J. Binding and hydrolysis of guanine nucleotides by Sec4p, a yeast protein involved in the regulation of vesicular traffic. J Biol Chem. 1990 Jun 5;265(16):9366–9372. [PubMed] [Google Scholar]
  28. Kahn R. A. Fluoride is not an activator of the smaller (20-25 kDa) GTP-binding proteins. J Biol Chem. 1991 Aug 25;266(24):15595–15597. [PubMed] [Google Scholar]
  29. Kuroda S., Kikuchi A., Takai Y. Kinetic analysis of the binding of guanine nucleotides to bovine brain rhoB p20, a ras p21-like GTP-binding protein. Biochem Biophys Res Commun. 1989 Sep 15;163(2):674–681. doi: 10.1016/0006-291x(89)92276-6. [DOI] [PubMed] [Google Scholar]
  30. Lillie T. H., Gomperts B. D. Guanine nucleotide is essential and Ca2+ is a modulator in the exocytotic reaction of permeabilized rat mast cells. Biochem J. 1992 Nov 15;288(Pt 1):181–187. doi: 10.1042/bj2880181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lillie T. H., Whalley T. D., Gomperts B. D. Modulation of the exocytotic reaction of permeabilised rat mast cells by ATP, other nucleotides and Mg2+. Biochim Biophys Acta. 1991 Sep 24;1094(3):355–363. doi: 10.1016/0167-4889(91)90097-h. [DOI] [PubMed] [Google Scholar]
  32. Lindau M., Gomperts B. D. Techniques and concepts in exocytosis: focus on mast cells. Biochim Biophys Acta. 1991 Dec 12;1071(4):429–471. doi: 10.1016/0304-4157(91)90006-i. [DOI] [PubMed] [Google Scholar]
  33. Miller S. G., Moore H. P. Reconstitution of constitutive secretion using semi-intact cells: regulation by GTP but not calcium. J Cell Biol. 1991 Jan;112(1):39–54. doi: 10.1083/jcb.112.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Molina y Vedia L., Ohmstede C. A., Lapetina E. G. Properties of the exchange rate of guanine nucleotides to the novel rap-2B protein. Biochem Biophys Res Commun. 1990 Aug 31;171(1):319–324. doi: 10.1016/0006-291x(90)91395-9. [DOI] [PubMed] [Google Scholar]
  35. Neher E., Marty A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6712–6716. doi: 10.1073/pnas.79.21.6712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Oberhauser A. F., Monck J. R., Fernandez J. M. Events leading to the opening and closing of the exocytotic fusion pore have markedly different temperature dependencies. Kinetic analysis of single fusion events in patch-clamped mouse mast cells. Biophys J. 1992 Mar;61(3):800–809. doi: 10.1016/S0006-3495(92)81884-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shoji I., Kikuchi A., Kuroda S., Takai Y. Kinetic analysis of the binding of guanine nucleotide to bovine brain smg p25A. Biochem Biophys Res Commun. 1989 Jul 14;162(1):273–281. doi: 10.1016/0006-291x(89)91992-x. [DOI] [PubMed] [Google Scholar]
  38. Sorimachi M., Nishimura S., Yamagami K., Yada T. Fluoroaluminates stimulate histamine secretion in the digitonin-permeabilized rat mast cells. Jpn J Physiol. 1988;38(2):227–232. doi: 10.2170/jjphysiol.38.227. [DOI] [PubMed] [Google Scholar]
  39. Tatham P. E., Gomperts B. D. ATP inhibits onset of exocytosis in permeabilised mast cells. Biosci Rep. 1989 Feb;9(1):99–109. doi: 10.1007/BF01117516. [DOI] [PubMed] [Google Scholar]
  40. Wagner P., Molenaar C. M., Rauh A. J., Brökel R., Schmitt H. D., Gallwitz D. Biochemical properties of the ras-related YPT protein in yeast: a mutational analysis. EMBO J. 1987 Aug;6(8):2373–2379. doi: 10.1002/j.1460-2075.1987.tb02514.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES