Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Mar 1;290(Pt 2):411–417. doi: 10.1042/bj2900411

The interaction of 6-propionyl-2-(NN-dimethyl)aminonaphthalene (PRODAN)-labelled actin with actin-binding proteins and drugs.

K Zechel 1
PMCID: PMC1132289  PMID: 8452529

Abstract

The influence of various actin-binding proteins and drugs on the fluorescence emission of rabbit muscle actin labelled with the fluorescent probe acrylodan (6-acryloyl-2-dimethylaminonaphthalene) at Cys-374, the penultimate amino acid residue of the actin amino acid sequence, was studied. Addition of myosin, tropomyosin or phalloidin, agents known to bind only to filamentous F-actin, did not change the emission energy or the integrated intensity of the fluorescence spectrum. The presence of heavy meromyosin or of the glycolytic enzyme aldolase led to a small (approx. 2%) increase in the integrated intensity, and in the energy of the emitted fluorescence. The interaction of 6-propionyl-2-(NN-dimethyl)aminonaphthalene (PRODAN)-F-actin with pancreatic DNAase I and with a filament-severing 19 kDa protein from pig brain resulted in the gradual reduction of the integrated intensity of the emission and a red shift of the emission energy, suggestive of a disintegration of the actin filament structure. Profilin caused a < 10% change in the emission energy. Cytochalasin D reduced the integrated intensity of PRODAN-F-actin and red-shifted the emission energy, while cytochalasin B was without influence. Pancreatic DNAase I did not change the fluorescence emission of PRODAN-G-actin, suggesting that binding of this enzyme does not alter the environment of the probe. When the 19 kDa protein bound to PRODAN-G-actin, however, the integrated intensity was reduced and the emission energy was lowered. This effect was exploited to estimate the binding constant for the interaction between the 19 kDa protein and PRODAN-G-actin. The Kd was found to be about 0.25 microM.

Full text

PDF
411

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bamburg J. R., Harris H. E., Weeds A. G. Partial purification and characterization of an actin depolymerizing factor from brain. FEBS Lett. 1980 Nov 17;121(1):178–182. doi: 10.1016/0014-5793(80)81292-0. [DOI] [PubMed] [Google Scholar]
  2. Berl S., Chou M., Mytilineou C. Actin-stimulated myosin Mg2+-ATPase inhibition by brain protein. J Neurochem. 1983 May;40(5):1397–1405. doi: 10.1111/j.1471-4159.1983.tb13582.x. [DOI] [PubMed] [Google Scholar]
  3. Bonder E. M., Mooseker M. S. Cytochalasin B slows but does not prevent monomer addition at the barbed end of the actin filament. J Cell Biol. 1986 Jan;102(1):282–288. doi: 10.1083/jcb.102.1.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brenner S. L., Korn E. D. Substoichiometric concentrations of cytochalasin D inhibit actin polymerization. Additional evidence for an F-actin treadmill. J Biol Chem. 1979 Oct 25;254(20):9982–9985. [PubMed] [Google Scholar]
  5. Carlsson L., Nyström L. E., Sundkvist I., Markey F., Lindberg U. Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J Mol Biol. 1977 Sep 25;115(3):465–483. doi: 10.1016/0022-2836(77)90166-8. [DOI] [PubMed] [Google Scholar]
  6. Cooper J. A., Walker S. B., Pollard T. D. Pyrene actin: documentation of the validity of a sensitive assay for actin polymerization. J Muscle Res Cell Motil. 1983 Apr;4(2):253–262. doi: 10.1007/BF00712034. [DOI] [PubMed] [Google Scholar]
  7. Cummins P., Perry S. V. The subunits and biological activity of polymorphic forms of tropomyosin. Biochem J. 1973 Aug;133(4):765–777. doi: 10.1042/bj1330765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dancker P., Löw I., Hasselbach W., Wieland T. Interaction of actin with phalloidin: polymerization and stabilization of F-actin. Biochim Biophys Acta. 1975 Aug 19;400(2):407–414. doi: 10.1016/0005-2795(75)90196-8. [DOI] [PubMed] [Google Scholar]
  9. Detmers P., Weber A., Elzinga M., Stephens R. E. 7-Chloro-4-nitrobenzeno-2-oxa-1,3-diazole actin as a probe for actin polymerization. J Biol Chem. 1981 Jan 10;256(1):99–105. [PubMed] [Google Scholar]
  10. Doi Y., Frieden C. Actin polymerization. The effect of brevin on filament size and rate of polymerization. J Biol Chem. 1984 Oct 10;259(19):11868–11875. [PubMed] [Google Scholar]
  11. Elzinga M., Collins J. H. The primary structure of actin from rabbit skeletal muscle. Five cyanogen bromide peptides, including the NH2 and COOH termini. J Biol Chem. 1975 Aug 10;250(15):5897–5905. [PubMed] [Google Scholar]
  12. Fussmann B., Dancker P. Polymerization of actin in the absence and presence of cytochalasin B: problems of determining "critical concentration". Z Naturforsch C. 1986 Jul-Aug;41(7-8):781–786. doi: 10.1515/znc-1986-7-819. [DOI] [PubMed] [Google Scholar]
  13. Giuliano K. A., Khatib F. A., Hayden S. M., Daoud E. W., Adams M. E., Amorese D. A., Bernstein B. W., Bamburg J. R. Properties of purified actin depolymerizing factor from chick brain. Biochemistry. 1988 Dec 13;27(25):8931–8938. doi: 10.1021/bi00425a009. [DOI] [PubMed] [Google Scholar]
  14. Goddette D. W., Frieden C. Actin polymerization. The mechanism of action of cytochalasin D. J Biol Chem. 1986 Dec 5;261(34):15974–15980. [PubMed] [Google Scholar]
  15. Hitchcock S. E. Actin deoxyroboncuclease I interaction. Depolymerization and nucleotide exchange. J Biol Chem. 1980 Jun 25;255(12):5668–5673. [PubMed] [Google Scholar]
  16. Howard T. H., Lin S. Specific interaction of cytochalasins with muscle and platelet actin filaments in vitro. J Supramol Struct. 1979;11(3):283–293. doi: 10.1002/jss.400110303. [DOI] [PubMed] [Google Scholar]
  17. KASAI M., ASAKURA S., OOSAWA F. The G-F equilibrium in actin solutions under various conditions. Biochim Biophys Acta. 1962 Feb 12;57:13–21. doi: 10.1016/0006-3002(62)91072-7. [DOI] [PubMed] [Google Scholar]
  18. Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
  19. Kouyama T., Mihashi K. Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur J Biochem. 1981;114(1):33–38. [PubMed] [Google Scholar]
  20. LOWEY S., COHEN C. Studies on the structure of myosin. J Mol Biol. 1962 Apr;4:293–308. doi: 10.1016/s0022-2836(62)80007-2. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lee S., Li M., Pollard T. D. Evaluation of the binding of Acanthamoeba profilin to pyrene-labeled actin by fluorescence enhancement. Anal Biochem. 1988 Jan;168(1):148–155. doi: 10.1016/0003-2697(88)90022-x. [DOI] [PubMed] [Google Scholar]
  23. Lin T. I. Fluorimetric studies of actin labeled with dansyl aziridine. Arch Biochem Biophys. 1978 Jan 30;185(2):285–299. doi: 10.1016/0003-9861(78)90170-4. [DOI] [PubMed] [Google Scholar]
  24. Lusty C. J., Fasold H. Characterization of sulfhydryl groups of actin. Biochemistry. 1969 Jul;8(7):2933–2939. doi: 10.1021/bi00835a036. [DOI] [PubMed] [Google Scholar]
  25. MacLean-Fletcher S., Pollard T. D. Identification of a factor in conventional muscle actin preparations which inhibits actin filament self-association. Biochem Biophys Res Commun. 1980 Sep 16;96(1):18–27. doi: 10.1016/0006-291x(80)91175-4. [DOI] [PubMed] [Google Scholar]
  26. Maekawa S., Nishida E., Ohta Y., Sakai H. Isolation of low molecular weight actin-binding proteins from porcine brain. J Biochem. 1984 Feb;95(2):377–385. doi: 10.1093/oxfordjournals.jbchem.a134618. [DOI] [PubMed] [Google Scholar]
  27. Malm B. Chemical modification of Cys-374 of actin interferes with the formation of the profilactin complex. FEBS Lett. 1984 Aug 6;173(2):399–402. doi: 10.1016/0014-5793(84)80813-3. [DOI] [PubMed] [Google Scholar]
  28. Malm B., Larsson H., Lindberg U. The profilin--actin complex: further characterization of profilin and studies on the stability of the complex. J Muscle Res Cell Motil. 1983 Oct;4(5):569–588. doi: 10.1007/BF00712116. [DOI] [PubMed] [Google Scholar]
  29. Mannherz H. G., Goody R. S., Konrad M., Nowak E. The interaction of bovine pancreatic deoxyribonuclease I and skeletal muscle actin. Eur J Biochem. 1980 Mar;104(2):367–379. doi: 10.1111/j.1432-1033.1980.tb04437.x. [DOI] [PubMed] [Google Scholar]
  30. Marriott G., Zechel K., Jovin T. M. Spectroscopic and functional characterization of an environmentally sensitive fluorescent actin conjugate. Biochemistry. 1988 Aug 23;27(17):6214–6220. doi: 10.1021/bi00417a004. [DOI] [PubMed] [Google Scholar]
  31. Matsuzaki F., Matsumoto S., Yahara I., Yonezawa N., Nishida E., Sakai H. Cloning and characterization of porcine brain cofilin cDNA. Cofilin contains the nuclear transport signal sequence. J Biol Chem. 1988 Aug 15;263(23):11564–11568. [PubMed] [Google Scholar]
  32. Miki M. Interaction of Lys-61 labeled actin with myosin subfragment-1 and the regulatory proteins. J Biochem. 1989 Oct;106(4):651–655. doi: 10.1093/oxfordjournals.jbchem.a122911. [DOI] [PubMed] [Google Scholar]
  33. Miki M., Wahl P., Auchet J. C. Fluorescence anisotropy of labeled F-actin: influence of divalent cations on the interaction between F-actin and myosin heads. Biochemistry. 1982 Jul 20;21(15):3661–3665. doi: 10.1021/bi00258a021. [DOI] [PubMed] [Google Scholar]
  34. Miki M., dos Remedios C. G. Fluorescence quenching studies of fluorescein attached to Lys-61 or Cys-374 in actin: effects of polymerization, myosin subfragment-1 binding, and tropomyosin-troponin binding. J Biochem. 1988 Aug;104(2):232–235. doi: 10.1093/oxfordjournals.jbchem.a122448. [DOI] [PubMed] [Google Scholar]
  35. Méjean C., Pons F., Benyamin Y., Roustan C. Antigenic probes locate binding sites for the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, aldolase and phosphofructokinase on the actin monomer in microfilaments. Biochem J. 1989 Dec 15;264(3):671–677. doi: 10.1042/bj2640671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nishida E., Maekawa S., Sakai H. Cofilin, a protein in porcine brain that binds to actin filaments and inhibits their interactions with myosin and tropomyosin. Biochemistry. 1984 Oct 23;23(22):5307–5313. doi: 10.1021/bi00317a032. [DOI] [PubMed] [Google Scholar]
  37. Nishida E. Opposite effects of cofilin and profilin from porcine brain on rate of exchange of actin-bound adenosine 5'-triphosphate. Biochemistry. 1985 Feb 26;24(5):1160–1164. doi: 10.1021/bi00326a015. [DOI] [PubMed] [Google Scholar]
  38. Pinder J. C., Gratzer W. B. Investigation of the actin-deoxyribonuclease I interaction using a pyrene-conjugated actin derivative. Biochemistry. 1982 Sep 28;21(20):4886–4890. doi: 10.1021/bi00263a009. [DOI] [PubMed] [Google Scholar]
  39. Pollard T. D. Myosin purification and characterization. Methods Cell Biol. 1982;24:333–371. doi: 10.1016/s0091-679x(08)60665-2. [DOI] [PubMed] [Google Scholar]
  40. Porter M., Weber A. Non-cooperative response of actin-cystein 373 in cooperatively behaving regulated actin filaments. FEBS Lett. 1979 Sep 15;105(2):259–262. doi: 10.1016/0014-5793(79)80624-9. [DOI] [PubMed] [Google Scholar]
  41. Prendergast F. G., Meyer M., Carlson G. L., Iida S., Potter J. D. Synthesis, spectral properties, and use of 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan). A thiol-selective, polarity-sensitive fluorescent probe. J Biol Chem. 1983 Jun 25;258(12):7541–7544. [PubMed] [Google Scholar]
  42. Rickard J. E., Sheterline P. Cytoplasmic concentrations of inorganic phosphate affect the critical concentration for assembly of actin in the presence of cytochalasin D or ADP. J Mol Biol. 1986 Sep 20;191(2):273–280. doi: 10.1016/0022-2836(86)90264-0. [DOI] [PubMed] [Google Scholar]
  43. Spudich J. A., Lin S. Cytochalasin B, its interaction with actin and actomyosin from muscle (cell movement-microfilaments-rabbit striated muscle). Proc Natl Acad Sci U S A. 1972 Feb;69(2):442–446. doi: 10.1073/pnas.69.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  45. Tao T., Cho J. Fluorescence lifetime quenching studies on the accessibilities of actin sulfhydryl sites. Biochemistry. 1979 Jun 26;18(13):2759–2765. doi: 10.1021/bi00580a011. [DOI] [PubMed] [Google Scholar]
  46. Tawada K., Wahl P., Auchet J. C. Study of actin and its interactions with heavy meromyosin and the regulatory proteins by the pulse fluorimetry in polarized light of a fluorescent probe attached to an actin cysteine. Eur J Biochem. 1978 Aug 1;88(2):411–419. doi: 10.1111/j.1432-1033.1978.tb12463.x. [DOI] [PubMed] [Google Scholar]
  47. Urbanik E., Ware B. R. Actin filament capping and cleaving activity of cytochalasins B, D, E, and H. Arch Biochem Biophys. 1989 Feb 15;269(1):181–187. doi: 10.1016/0003-9861(89)90098-2. [DOI] [PubMed] [Google Scholar]
  48. Vandekerckhove J., Deboben A., Nassal M., Wieland T. The phalloidin binding site of F-actin. EMBO J. 1985 Nov;4(11):2815–2818. doi: 10.1002/j.1460-2075.1985.tb04008.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Yahara I., Harada F., Sekita S., Yoshihira K., Natori S. Correlation between effects of 24 different cytochalasins on cellular structures and cellular events and those on actin in vitro. J Cell Biol. 1982 Jan;92(1):69–78. doi: 10.1083/jcb.92.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zechel K. Effects of formamide on the polymerization and depolymerization of muscle actin. Eur J Biochem. 1981 Sep;119(1):209–213. doi: 10.1111/j.1432-1033.1981.tb05596.x. [DOI] [PubMed] [Google Scholar]
  51. Zimmerle C. T., Frieden C. Effect of temperature on the mechanism of actin polymerization. Biochemistry. 1986 Oct 21;25(21):6432–6438. doi: 10.1021/bi00369a014. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES