Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Mar 1;290(Pt 2):503–508. doi: 10.1042/bj2900503

Cloning and expression of the bovine intestinal alkaline phosphatase gene: biochemical characterization of the recombinant enzyme.

H Weissig 1, A Schildge 1, M F Hoylaerts 1, M Iqbal 1, J L Millán 1
PMCID: PMC1132302  PMID: 8452539

Abstract

A complete genomic clone and a full-length cDNA coding for bovine intestinal alkaline phosphatase have been isolated and sequenced. The gene (5.4 kb) contains 11 exons separated by ten small introns at positions identical to those other members of the eukaryotic tissue-specific alkaline phosphatase family. In addition, 1.5 kb of upstream sequences contain putative regulatory elements showing sequence similarity to human and mouse intestinal alkaline phosphatase promoter sequences. To achieve recombinant bovine intestinal alkaline phosphatase expression, the coding region of the gene was subcloned into the pcDNA I eukaryotic expression vector and transfected into Chinese hamster ovary cells. Recombinant bovine intestinal alkaline phosphatase displays enzymatic properties comparable with those of purified native bovine intestinal alkaline phosphatase, a slightly increased thermal stability and, upon desialylation, it shows a homogeneous behaviour in agarose gel electrophoresis and isoelectric focusing. The availability of the recombinant bovine intestinal alkaline phosphatase and the elucidation of its primary sequence will help to accelerate our efforts to obtain the first crystallographic model of a eukaryotic alkaline phosphatase molecule.

Full text

PDF
503

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger J., Garattini E., Hua J. C., Udenfriend S. Cloning and sequencing of human intestinal alkaline phosphatase cDNA. Proc Natl Acad Sci U S A. 1987 Feb;84(3):695–698. doi: 10.1073/pnas.84.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  3. Culp J. S., Hermodson M., Butler L. G. The active-site and amino-terminal amino acid sequence of bovine intestinal alkaline phosphatase. Biochim Biophys Acta. 1985 Oct 18;831(3):330–334. doi: 10.1016/0167-4838(85)90115-3. [DOI] [PubMed] [Google Scholar]
  4. Eliakim R., Seetharam S., Tietze C. C., Alpers D. H. Differential regulation of mRNAs encoding for rat intestinal alkaline phosphatase. Am J Physiol. 1990 Jul;259(1 Pt 1):G93–G98. doi: 10.1152/ajpgi.1990.259.1.G93. [DOI] [PubMed] [Google Scholar]
  5. Garattini E., Hua J. C., Udenfriend S. Cloning and sequencing of bovine kidney alkaline phosphatase cDNA. Gene. 1987;59(1):41–46. doi: 10.1016/0378-1119(87)90264-2. [DOI] [PubMed] [Google Scholar]
  6. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Griffiths J., Black J. Separation and identification of alkaline phosphatase isoenzymes and isoforms in serum of healthy persons by isoelectric focusing. Clin Chem. 1987 Dec;33(12):2171–2177. [PubMed] [Google Scholar]
  8. Hahnel A. C., Rappolee D. A., Millan J. L., Manes T., Ziomek C. A., Theodosiou N. G., Werb Z., Pedersen R. A., Schultz G. A. Two alkaline phosphatase genes are expressed during early development in the mouse embryo. Development. 1990 Oct;110(2):555–564. doi: 10.1242/dev.110.2.555. [DOI] [PubMed] [Google Scholar]
  9. Henthorn P. S., Raducha M., Kadesch T., Weiss M. J., Harris H. Sequence and characterization of the human intestinal alkaline phosphatase gene. J Biol Chem. 1988 Aug 25;263(24):12011–12019. [PubMed] [Google Scholar]
  10. Hoffmann-Blume E., Garcia Marenco M. B., Ehle H., Bublitz R., Schulze M., Horn A. Evidence for glycosylphosphatidylinositol anchoring of intralumenal alkaline phosphatase of the calf intestine. Eur J Biochem. 1991 Jul 15;199(2):305–312. doi: 10.1111/j.1432-1033.1991.tb16125.x. [DOI] [PubMed] [Google Scholar]
  11. Hoylaerts M. F., Manes T., Millán J. L. Molecular mechanism of uncompetitive inhibition of human placental and germ-cell alkaline phosphatase. Biochem J. 1992 Aug 15;286(Pt 1):23–30. doi: 10.1042/bj2860023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoylaerts M. F., Millán J. L. Site-directed mutagenesis and epitope-mapped monoclonal antibodies define a catalytically important conformational difference between human placental and germ cell alkaline phosphatase. Eur J Biochem. 1991 Dec 5;202(2):605–616. doi: 10.1111/j.1432-1033.1991.tb16414.x. [DOI] [PubMed] [Google Scholar]
  13. Hummer C., Millán J. L. Gly429 is the major determinant of uncompetitive inhibition of human germ cell alkaline phosphatase by L-leucine. Biochem J. 1991 Feb 15;274(Pt 1):91–95. doi: 10.1042/bj2740091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kim E. E., Wyckoff H. W. Structure of alkaline phosphatases. Clin Chim Acta. 1990 Jan 15;186(2):175–187. doi: 10.1016/0009-8981(90)90035-q. [DOI] [PubMed] [Google Scholar]
  15. Knoll B. J., Rothblum K. N., Longley M. Nucleotide sequence of the human placental alkaline phosphatase gene. Evolution of the 5' flanking region by deletion/substitution. J Biol Chem. 1988 Aug 25;263(24):12020–12027. [PubMed] [Google Scholar]
  16. Lowe M., Strauss A. W., Alpers R., Seetharam S., Alpers D. H. Molecular cloning and expression of a cDNA encoding the membrane-associated rat intestinal alkaline phosphatase. Biochim Biophys Acta. 1990 Feb 9;1037(2):170–177. doi: 10.1016/0167-4838(90)90164-b. [DOI] [PubMed] [Google Scholar]
  17. Makiya R., Stigbrand T. Placental alkaline phosphatase has a binding site for the human immunoglobulin-G Fc portion. Eur J Biochem. 1992 Apr 1;205(1):341–345. doi: 10.1111/j.1432-1033.1992.tb16785.x. [DOI] [PubMed] [Google Scholar]
  18. Manes T., Glade K., Ziomek C. A., Millán J. L. Genomic structure and comparison of mouse tissue-specific alkaline phosphatase genes. Genomics. 1990 Nov;8(3):541–554. doi: 10.1016/0888-7543(90)90042-s. [DOI] [PubMed] [Google Scholar]
  19. Marchuk D., Drumm M., Saulino A., Collins F. S. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res. 1991 Mar 11;19(5):1154–1154. doi: 10.1093/nar/19.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Micanovic R., Bailey C. A., Brink L., Gerber L., Pan Y. C., Hulmes J. D., Udenfriend S. Aspartic acid-484 of nascent placental alkaline phosphatase condenses with a phosphatidylinositol glycan to become the carboxyl terminus of the mature enzyme. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1398–1402. doi: 10.1073/pnas.85.5.1398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Millán J. L. Alkaline phosphatase as a reporter of cancerous transformation. Clin Chim Acta. 1992 Jul 31;209(1-2):123–129. doi: 10.1016/0009-8981(92)90343-o. [DOI] [PubMed] [Google Scholar]
  22. Millán J. L., Manes T. Seminoma-derived Nagao isozyme is encoded by a germ-cell alkaline phosphatase gene. Proc Natl Acad Sci U S A. 1988 May;85(9):3024–3028. doi: 10.1073/pnas.85.9.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Millán J. L. Oncodevelopmental expression and structure of alkaline phosphatase genes. Anticancer Res. 1988 Sep-Oct;8(5A):995–1004. [PubMed] [Google Scholar]
  24. Millán J. L. Promoter structure of the human intestinal alkaline phosphatase gene. Nucleic Acids Res. 1987 Dec 23;15(24):10599–10599. doi: 10.1093/nar/15.24.10599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nordheim A., Rich A. The sequence (dC-dA)n X (dG-dT)n forms left-handed Z-DNA in negatively supercoiled plasmids. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1821–1825. doi: 10.1073/pnas.80.7.1821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sowadski J. M., Handschumacher M. D., Murthy H. M., Foster B. A., Wyckoff H. W. Refined structure of alkaline phosphatase from Escherichia coli at 2.8 A resolution. J Mol Biol. 1985 Nov 20;186(2):417–433. doi: 10.1016/0022-2836(85)90115-9. [DOI] [PubMed] [Google Scholar]
  27. Tsonis P. A., Argraves W. S., Millán J. L. A putative functional domain of human placental alkaline phosphatase predicted from sequence comparisons. Biochem J. 1988 Sep 1;254(2):623–624. doi: 10.1042/bj2540623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Van Hoof V. O., Lepoutre L. G., Hoylaerts M. F., Chevigné R., De Broe M. E. Improved agarose electrophoretic method for separating alkaline phosphatase isoenzymes in serum. Clin Chem. 1988 Sep;34(9):1857–1862. [PubMed] [Google Scholar]
  29. Zwaig N., Milstein C. The amino acid sequence around the reactive serine residue in alkaline phosphatase of Serratia marcescens. Biochem J. 1964 Aug;92(2):421–422. doi: 10.1042/bj0920421. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES