Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Mar 1;290(Pt 2):563–570. doi: 10.1042/bj2900563

UDP-sugar metabolism in Swarm rat chondrosarcoma chondrocytes.

C Sweeney 1, D Mackintosh 1, R M Mason 1
PMCID: PMC1132311  PMID: 8452547

Abstract

UDP-sugars and adenine nucleotides were extracted from freshly isolated chondrocytes and primary cell cultures and analysed by anion-exchange h.p.l.c. The pool sizes of UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine, UDP-glucose-galactose, UDP-glucuronate and UDP-xylose were 2.9, 1.2, 2.5, 0.6 and 0.03 nmol/10(6) freshly isolated chondrocytes. When chondrocytes were maintained in Dulbecco's modified Eagle medium supplemented with 15% foetal-bovine serum, synthesis of [35S]proteoglycan and [3H]protein decreased over the first 48 h in culture, as did the pools of UDP-glucuronate and ATP. In contrast, the size of the UDP-N-acetylhexosamine pools underwent little change during culture. [35S]Proteoglycan and [3H]protein syntheses were stimulated in cultures supplemented with serum or insulin compared with those maintained in medium alone, in agreement with previous results. However, the UDP-sugar pool sizes were the same in both supplemented and non-supplemented cultures. In cultures maintained in the presence of [1-3H]glucose, the UDP-sugars were labelled to a constant 3H specific radioactivity which was very similar to that of the labelling medium. UDP-N-acetylhexosamines were labelled to constant 3H specific radioactivity with [6-3H]glucosamine as a precursor, but only about 1 in 375 of these UDP-sugars was derived from the amino sugar in the presence of glucose. The half-life (t1/2) for UDP-hexoses, UDP-glucuronate and UDP-N-acetylhexosamines was about 12, 12 and 50 min respectively.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aw T. Y., Jones D. P. Direct determination of UDP-glucuronic acid in cell extracts by high-performance liquid chromatography. Anal Biochem. 1982 Nov 15;127(1):32–36. doi: 10.1016/0003-2697(82)90140-3. [DOI] [PubMed] [Google Scholar]
  2. Balduini C., Brovelli A., Cstellani A. A. Biosynthesis of glycosaminoglycans in bovine cornea. The effet of uridine diphosphate xylose. Biochem J. 1970 Dec;120(4):719–723. doi: 10.1042/bj1200719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bansal M. K., Ward H., Mason R. M. Proteoglycan synthesis in suspension cultures of Swarm rat chondrosarcoma chondrocytes and inhibition by exogenous hyaluronate. Arch Biochem Biophys. 1986 May 1;246(2):602–610. doi: 10.1016/0003-9861(86)90315-2. [DOI] [PubMed] [Google Scholar]
  4. Buchanan J. M. The amidotransferases. Adv Enzymol Relat Areas Mol Biol. 1973;39:91–183. doi: 10.1002/9780470122846.ch2. [DOI] [PubMed] [Google Scholar]
  5. Castellani A. A., De Luca G., Rindi S., Salvini R., Tira M. E. Regulatory mechanisms of UDP-glucuronic acid biosynthesis in cultured human skin fibroblasts. Ital J Biochem. 1986 Sep-Oct;35(5):296–303. [PubMed] [Google Scholar]
  6. D'Arville C., Mason R. M. Effects of serum and insulin on hyaluronate synthesis by cultures of chondrocytes from the Swarm rat chondrosarcoma. Biochim Biophys Acta. 1983 Oct 4;760(1):53–60. doi: 10.1016/0304-4165(83)90123-x. [DOI] [PubMed] [Google Scholar]
  7. Eriksson G., Särnstrand B., Malmström A. Equilibration of [3H]glucosamine and [35S]sulfate with intracellular pools of UDP-N-acetylhexosamine and 3'-phosphoadenosine-5'-phosphosulfate (PAPS) in cultured fibroblasts. Arch Biochem Biophys. 1984 Dec;235(2):692–698. doi: 10.1016/0003-9861(84)90245-5. [DOI] [PubMed] [Google Scholar]
  8. Gainey P. A., Phelps C. F. Uridine diphosphate glucuronic acid production and utilization in various tissues actively synthesizing glycosaminoglycans. Biochem J. 1972 Jun;128(2):215–227. doi: 10.1042/bj1280215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Handley C. J., Phelps C. F. The concentrations of sugar nucleotides in bovine corneal epithelium and endothelium. Biochem J. 1972 May;127(5):911–912. doi: 10.1042/bj1270911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hellerstein M. K., Greenblatt D. J., Munro H. N. Glycoconjugates as noninvasive probes of intrahepatic metabolism: pathways of glucose entry into compartmentalized hepatic UDP-glucose pools during glycogen accumulation. Proc Natl Acad Sci U S A. 1986 Sep;83(18):7044–7048. doi: 10.1073/pnas.83.18.7044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Helting T., Rodén L. Biosynthesis of chondroitin sulfate. I. Galactosyl transfer in the formation of the carbohydrate-protein linkage region. J Biol Chem. 1969 May 25;244(10):2790–2798. [PubMed] [Google Scholar]
  12. KORNFELD S., KORNFELD R., NEUFELD E. F., O'BRIEN P. J. THE FEEDBACK CONTROL OF SUGAR NUCLEOTIDE BIOSYNTHESIS IN LIVER. Proc Natl Acad Sci U S A. 1964 Aug;52:371–379. doi: 10.1073/pnas.52.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kimura J. H., Hardingham T. E., Hascall V. C., Solursh M. Biosynthesis of proteoglycans and their assembly into aggregates in cultures of chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem. 1979 Apr 25;254(8):2600–2609. [PubMed] [Google Scholar]
  14. Kimura J. H., Lohmander L. S., Hascall V. C. Studies on the biosynthesis of cartilage proteoglycan in a model system of cultured chondrocytes from the Swarm rat chondrosarcoma. J Cell Biochem. 1984;26(4):261–278. doi: 10.1002/jcb.240260406. [DOI] [PubMed] [Google Scholar]
  15. Krug E., Zweibaum A., Schulz-Holstege C., Keppler D. D-glucosamine-induced changes in nucleotide metabolism and growth of colon-carcinoma cells in culture. Biochem J. 1984 Feb 1;217(3):701–708. doi: 10.1042/bj2170701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kuhn N. J., White A. The role of nucleoside diphosphatase in a uridine nucleotide cycle associated with lactose synthesis in rat mammary-gland Golgi apparatus. Biochem J. 1977 Dec 15;168(3):423–433. doi: 10.1042/bj1680423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LELOIR L. F. The enzymatic transformation of uridine diphosphate glucose into a galactose derivative. Arch Biochem Biophys. 1951 Sep;33(2):186–190. doi: 10.1016/0003-9861(51)90096-3. [DOI] [PubMed] [Google Scholar]
  18. Lohmander L. S., Hascall V. C., Yanagishita M., Kuettner K. E., Kimura J. H. Post-translational events in proteoglycan synthesis: kinetics of synthesis of chondroitin sulfate and oligosaccharides on the core protein. Arch Biochem Biophys. 1986 Oct;250(1):211–227. doi: 10.1016/0003-9861(86)90719-8. [DOI] [PubMed] [Google Scholar]
  19. Maroudas A. Glycosaminoglycan turn-over in articular cartilage. Philos Trans R Soc Lond B Biol Sci. 1975 Jul 17;271(912):293–313. doi: 10.1098/rstb.1975.0054. [DOI] [PubMed] [Google Scholar]
  20. Mason R. M., Kimura J. H., Hascall V. C. Biosynthesis of hyaluronic acid in cultures of chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem. 1982 Mar 10;257(5):2236–2245. [PubMed] [Google Scholar]
  21. NEUFELD E. F., HALL C. W. INHIBITION OF UDP-D-GLUCOSE DEHYDROGENASE BY UDP-D-XYLOSE: A POSSIBLE REGULATORY MECHANISM. Biochem Biophys Res Commun. 1965 May 3;19:456–461. doi: 10.1016/0006-291x(65)90146-4. [DOI] [PubMed] [Google Scholar]
  22. Perez M., Hirschberg C. B. Translocation of UDP-N-acetylglucosamine into vesicles derived from rat liver rough endoplasmic reticulum and Golgi apparatus. J Biol Chem. 1985 Apr 25;260(8):4671–4678. [PubMed] [Google Scholar]
  23. Perez M., Hirschberg C. B. Transport of sugar nucleotides and adenosine 3'-phosphate 5'-phosphosulfate into vesicles derived from the Golgi apparatus. Biochim Biophys Acta. 1986 Sep 22;864(2):213–222. doi: 10.1016/0304-4157(86)90012-2. [DOI] [PubMed] [Google Scholar]
  24. Singh J., Schwarz L. R., Wiebel F. J. A rapid enzymic procedure for the determination of picomole amounts of UDP-glucuronic acid. Biochem J. 1980 Aug 1;189(2):369–372. doi: 10.1042/bj1890369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Speight G., Handley C. J., Lowther D. A. Extracellular matrix metabolism by chondrocytes. 4. Role of glutamine in glycosaminoglycan synthesis in vitro by chondrocytes. Biochim Biophys Acta. 1978 May 3;540(2):238–245. doi: 10.1016/0304-4165(78)90136-8. [DOI] [PubMed] [Google Scholar]
  26. Stevens R. L., Hascall V. C. Characterization of proteoglycans synthesized by rat chondrosarcoma chondrocytes treated with multiplication-stimulating activity and insulin. J Biol Chem. 1981 Feb 25;256(4):2053–2058. [PubMed] [Google Scholar]
  27. Venn G., Mason R. M. Biosynthesis and metabolism in vivo of intervertebral-disc proteoglycans in the mouse. Biochem J. 1983 Nov 1;215(2):217–225. doi: 10.1042/bj2150217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wice B. M., Trugnan G., Pinto M., Rousset M., Chevalier G., Dussaulx E., Lacroix B., Zweibaum A. The intracellular accumulation of UDP-N-acetylhexosamines is concomitant with the inability of human colon cancer cells to differentiate. J Biol Chem. 1985 Jan 10;260(1):139–146. [PubMed] [Google Scholar]
  29. Winterburn P. J., Phelps C. F. Binding of substrates and modifiers to glucosamine synthetase. Biochem J. 1971 Feb;121(4):721–730. doi: 10.1042/bj1210721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Winterburn P. J., Phelps C. F. Purification and some kinetic properties of rat liver glucosamine synthetase. Biochem J. 1971 Feb;121(4):701–709. doi: 10.1042/bj1210701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Winterburn P. J., Phelps C. F. Studies on the control of hexosamine biosynthesis by glucosamine synthetase. Biochem J. 1971 Feb;121(4):711–720. doi: 10.1042/bj1210711. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES