Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Mar 1;290(Pt 2):601–607. doi: 10.1042/bj2900601

Characterization of the bacterial metalloendopeptidase pitrilysin by use of a continuous fluorescence assay.

A Anastasi 1, C G Knight 1, A J Barrett 1
PMCID: PMC1132317  PMID: 7680857

Abstract

Pitrilysin (EC 3.4.99.44) has been purified from an over-expressing strain of Escherichia coli. A 13-residue quenched-fluorescent-peptide substrate for the enzyme has been synthesized, and found also to be cleaved by the homologous enzyme, insulinase (EC 3.4.99.45). The action of pitrilysin on peptides and proteins was studied: insulin B chain was the most rapidly degraded, small peptides down to 10 residues in length were cleaved more slowly, intact insulin was cleaved very slowly but with a very low Km, and there was no action on the larger proteins tested. Since the activity of pitrilysin is confined to substrates smaller than proteins, it can be described as an endopeptidase of the 'oligopeptidase' type, and like other such enzymes, it did not interact with alpha 2-macroglobulin. The metal-dependence of pitrilysin was confirmed, and it was found to be inhibited by bacitracin, especially in the presence of zinc.

Full text

PDF
601

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F., Prody C., Kustu S. Simple, rapid, and quantitative release of periplasmic proteins by chloroform. J Bacteriol. 1984 Dec;160(3):1181–1183. doi: 10.1128/jb.160.3.1181-1183.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baneyx F., Georgiou G. Construction and characterization of Escherichia coli strains deficient in multiple secreted proteases: protease III degrades high-molecular-weight substrates in vivo. J Bacteriol. 1991 Apr;173(8):2696–2703. doi: 10.1128/jb.173.8.2696-2703.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barrett A. J., Brown M. A. Chicken liver Pz-peptidase, a thiol-dependent metallo-endopeptidase. Biochem J. 1990 Nov 1;271(3):701–706. doi: 10.1042/bj2710701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barrett A. J., Knight C. G., Brown M. A., Tisljar U. A continuous fluorimetric assay for clostridial collagenase and Pz-peptidase activity. Biochem J. 1989 May 15;260(1):259–263. doi: 10.1042/bj2600259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barrett A. J., Rawlings N. D. Oligopeptidases, and the emergence of the prolyl oligopeptidase family. Biol Chem Hoppe Seyler. 1992 Jul;373(7):353–360. doi: 10.1515/bchm3.1992.373.2.353. [DOI] [PubMed] [Google Scholar]
  6. Becker A. B., Roth R. A. An unusual active site identified in a family of zinc metalloendopeptidases. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3835–3839. doi: 10.1073/pnas.89.9.3835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  8. Cheng Y. S., Zipser D. Purification and characterization of protease III from Escherichia coli. J Biol Chem. 1979 Jun 10;254(11):4698–4706. [PubMed] [Google Scholar]
  9. Davies M. E., Coughlan R., Barrett A. J. Plasma from rheumatoid arthritis patients does not contain abnormally high levels of alpha 2-macroglobulin-proteinase complexes. Arthritis Rheum. 1987 Aug;30(8):872–877. doi: 10.1002/art.1780300805. [DOI] [PubMed] [Google Scholar]
  10. Ding L., Becker A. B., Suzuki A., Roth R. A. Comparison of the enzymatic and biochemical properties of human insulin-degrading enzyme and Escherichia coli protease III. J Biol Chem. 1992 Feb 5;267(4):2414–2420. [PubMed] [Google Scholar]
  11. Duckworth W. C. Insulin degradation: mechanisms, products, and significance. Endocr Rev. 1988 Aug;9(3):319–345. doi: 10.1210/edrv-9-3-319. [DOI] [PubMed] [Google Scholar]
  12. Dykstra C. C., Kushner S. R. Physical characterization of the cloned protease III gene from Escherichia coli K-12. J Bacteriol. 1985 Sep;163(3):1055–1059. doi: 10.1128/jb.163.3.1055-1059.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Finch P. W., Wilson R. E., Brown K., Hickson I. D., Emmerson P. T. Complete nucleotide sequence of the Escherichia coli ptr gene encoding protease III. Nucleic Acids Res. 1986 Oct 10;14(19):7695–7703. doi: 10.1093/nar/14.19.7695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Garcia J. V., Fenton B. W., Rosner M. R. Isolation and characterization of an insulin-degrading enzyme from Drosophila melanogaster. Biochemistry. 1988 Jun 14;27(12):4237–4244. doi: 10.1021/bi00412a006. [DOI] [PubMed] [Google Scholar]
  15. Goldberg A. L., Swamy K. H., Chung C. H., Larimore F. S. Proteases in Escherichia coli. Methods Enzymol. 1981;80(Pt 100):680–702. doi: 10.1016/s0076-6879(81)80052-3. [DOI] [PubMed] [Google Scholar]
  16. Guan A. L., Retzios A. D., Henderson G. N., Markland F. S., Jr Purification and characterization of a fibrinolytic enzyme from venom of the southern copperhead snake (Agkistrodon contortrix contortrix). Arch Biochem Biophys. 1991 Sep;289(2):197–207. doi: 10.1016/0003-9861(91)90462-r. [DOI] [PubMed] [Google Scholar]
  17. Hawkes R., Niday E., Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem. 1982 Jan 1;119(1):142–147. doi: 10.1016/0003-2697(82)90677-7. [DOI] [PubMed] [Google Scholar]
  18. Kerr M. A., Kenny A. J. The molecular weight and properties of a neutral metallo-endopeptidase from rabbit kidney brush border. Biochem J. 1974 Mar;137(3):489–495. doi: 10.1042/bj1370489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Knight C. G., Willenbrock F., Murphy G. A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Lett. 1992 Jan 27;296(3):263–266. doi: 10.1016/0014-5793(92)80300-6. [DOI] [PubMed] [Google Scholar]
  20. Larsen K. S., Auld D. S. Carboxypeptidase A: mechanism of zinc inhibition. Biochemistry. 1989 Dec 12;28(25):9620–9625. doi: 10.1021/bi00451a012. [DOI] [PubMed] [Google Scholar]
  21. Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
  22. Morrison J. F. Kinetics of the reversible inhibition of enzyme-catalysed reactions by tight-binding inhibitors. Biochim Biophys Acta. 1969;185(2):269–286. doi: 10.1016/0005-2744(69)90420-3. [DOI] [PubMed] [Google Scholar]
  23. Nishino N., Powers J. C. Design of potent reversible inhibitors for thermolysin. Peptides containing zinc coordinating ligands and their use in affinity chromatography. Biochemistry. 1979 Oct 2;18(20):4340–4347. doi: 10.1021/bi00587a012. [DOI] [PubMed] [Google Scholar]
  24. Pocker Y., Biswas S. B. Self-association of insulin and the role of hydrophobic bonding: a thermodynamic model of insulin dimerization. Biochemistry. 1981 Jul 21;20(15):4354–4361. doi: 10.1021/bi00518a019. [DOI] [PubMed] [Google Scholar]
  25. Rawlings N. D., Barrett A. J. FLUSYS: a software package for the collection and analysis of kinetic and scanning data from Perkin-Elmer fluorimeters. Comput Appl Biosci. 1990 Apr;6(2):118–119. doi: 10.1093/bioinformatics/6.2.118. [DOI] [PubMed] [Google Scholar]
  26. Rawlings N. D., Barrett A. J. Homologues of insulinase, a new superfamily of metalloendopeptidases. Biochem J. 1991 Apr 15;275(Pt 2):389–391. doi: 10.1042/bj2750389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rose K., Savoy L. A., Muir A. V., Davies J. G., Offord R. E., Turcatti G. Insulin proteinase liberates from glucagon a fragment known to have enhanced activity against Ca2+ + Mg2+-dependent ATPase. Biochem J. 1988 Dec 15;256(3):847–851. doi: 10.1042/bj2560847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shii K., Yokono K., Baba S., Roth R. A. Purification and characterization of insulin-degrading enzyme from human erythrocytes. Diabetes. 1986 Jun;35(6):675–683. doi: 10.2337/diab.35.6.675. [DOI] [PubMed] [Google Scholar]
  29. Yasuda S., Takagi T. Overproduction of Escherichia coli replication proteins by the use of runaway-replication plasmids. J Bacteriol. 1983 Jun;154(3):1153–1161. doi: 10.1128/jb.154.3.1153-1161.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES