Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Mar 15;290(Pt 3):665–670. doi: 10.1042/bj2900665

Evidence for common structural changes in thrombin induced by active-site or exosite binding.

M A Parry 1, S R Stone 1, J Hofsteenge 1, M P Jackman 1
PMCID: PMC1132332  PMID: 8457193

Abstract

The gamma-loop of thrombin is a flexible, surface-accessible loop in free thrombin that appears to be one of several sites participating in the interaction of the enzyme with macromolecular substrates and inhibitors. Using limited proteolysis and intrinsic fluorescence measurements, we have studied changes in thrombin structure induced by small, site-specific ligands. Binding of a C-terminal peptide of hirudin to the anion-binding exosite of thrombin induced a structural change in the gamma-loop, which caused a 6-fold reduction in the susceptibility of the enzyme to limited proteolysis by elastase and chymotrypsin. Binding of several active site-specific thrombin inhibitors conferred an even greater protection from proteolysis at the gamma-loop. For example, the covalent complex of thrombin with D-Phe-Pro-Arg-CH2Cl was 95-fold less susceptible to cleavage by chymotrypsin than the free enzyme. Furthermore, binding of either exosite or active-site probes induced a common intrinsic fluorescence change in thrombin (a fractional increase of 0.13). These results are surprising because crystallographic studies indicate that direct contact between the bound probes and relevant residues of the gamma-loop is very unlikely. Thus we have identified an allosteric interaction that couples the active site of thrombin to the gamma-loop. An interaction of this nature may be one way in which thrombomodulin modulates the reactivity of thrombin.

Full text

PDF
665

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banner D. W., Hadváry P. Crystallographic analysis at 3.0-A resolution of the binding to human thrombin of four active site-directed inhibitors. J Biol Chem. 1991 Oct 25;266(30):20085–20093. [PubMed] [Google Scholar]
  2. Bar-Shavit R., Kahn A., Wilner G. D., Fenton J. W., 2nd Monocyte chemotaxis: stimulation by specific exosite region in thrombin. Science. 1983 May 13;220(4598):728–731. doi: 10.1126/science.6836310. [DOI] [PubMed] [Google Scholar]
  3. Bode W., Mayr I., Baumann U., Huber R., Stone S. R., Hofsteenge J. The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 1989 Nov;8(11):3467–3475. doi: 10.1002/j.1460-2075.1989.tb08511.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bode W., Turk D., Stürzebecher J. Geometry of binding of the benzamidine- and arginine-based inhibitors N alpha-(2-naphthyl-sulphonyl-glycyl)-DL-p-amidinophenylalanyl-pipe ridine (NAPAP) and (2R,4R)-4-methyl-1-[N alpha-(3-methyl-1,2,3,4-tetrahydro-8- quinolinesulphonyl)-L-arginyl]-2-piperidine carboxylic acid (MQPA) to human alpha-thrombin. X-ray crystallographic determination of the NAPAP-trypsin complex and modeling of NAPAP-thrombin and MQPA-thrombin. Eur J Biochem. 1990 Oct 5;193(1):175–182. doi: 10.1111/j.1432-1033.1990.tb19320.x. [DOI] [PubMed] [Google Scholar]
  5. Bourdon P., Fenton J. W., 2nd, Maraganore J. M. Affinity labeling of lysine-149 in the anion-binding exosite of human alpha-thrombin with an N alpha-(dinitrofluorobenzyl)hirudin C-terminal peptide. Biochemistry. 1990 Jul 10;29(27):6379–6384. doi: 10.1021/bi00479a006. [DOI] [PubMed] [Google Scholar]
  6. Braun P. J., Hofsteenge J., Chang J. Y., Stone S. R. Preparation and characterization of proteolyzed forms of human alpha-thrombin. Thromb Res. 1988 Apr 15;50(2):273–283. doi: 10.1016/0049-3848(88)90228-9. [DOI] [PubMed] [Google Scholar]
  7. Brezniak D. V., Brower M. S., Witting J. I., Walz D. A., Fenton J. W., 2nd Human alpha- to zeta-thrombin cleavage occurs with neutrophil cathepsin G or chymotrypsin while fibrinogen clotting activity is retained. Biochemistry. 1990 Apr 10;29(14):3536–3542. doi: 10.1021/bi00466a017. [DOI] [PubMed] [Google Scholar]
  8. Chen L. B., Teng N. N., Buchanan J. M. Mitogenicity of thrombin and surface alterations on mouse splenocytes. Exp Cell Res. 1976 Aug;101(1):41–46. doi: 10.1016/0014-4827(76)90409-2. [DOI] [PubMed] [Google Scholar]
  9. Dennis S., Wallace A., Hofsteenge J., Stone S. R. Use of fragments of hirudin to investigate thrombin-hirudin interaction. Eur J Biochem. 1990 Feb 22;188(1):61–66. doi: 10.1111/j.1432-1033.1990.tb15371.x. [DOI] [PubMed] [Google Scholar]
  10. Dodt J., Köhler S., Schmitz T., Wilhelm B. Distinct binding sites of Ala48-hirudin1-47 and Ala48-hirudin48-65 on alpha-thrombin. J Biol Chem. 1990 Jan 15;265(2):713–718. [PubMed] [Google Scholar]
  11. Eidt J. F., Allison P., Noble S., Ashton J., Golino P., McNatt J., Buja L. M., Willerson J. T. Thrombin is an important mediator of platelet aggregation in stenosed canine coronary arteries with endothelial injury. J Clin Invest. 1989 Jul;84(1):18–27. doi: 10.1172/JCI114138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Esmon C. T., Esmon N. L., Kurosawa S., Johnson A. E. Interaction of thrombin with thrombomodulin. Ann N Y Acad Sci. 1986;485:215–220. doi: 10.1111/j.1749-6632.1986.tb34583.x. [DOI] [PubMed] [Google Scholar]
  13. Fenton J. W., 2nd Thrombin specificity. Ann N Y Acad Sci. 1981;370:468–495. doi: 10.1111/j.1749-6632.1981.tb29757.x. [DOI] [PubMed] [Google Scholar]
  14. Grütter M. G., Priestle J. P., Rahuel J., Grossenbacher H., Bode W., Hofsteenge J., Stone S. R. Crystal structure of the thrombin-hirudin complex: a novel mode of serine protease inhibition. EMBO J. 1990 Aug;9(8):2361–2365. doi: 10.1002/j.1460-2075.1990.tb07410.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hanson S. R., Harker L. A. Interruption of acute platelet-dependent thrombosis by the synthetic antithrombin D-phenylalanyl-L-prolyl-L-arginyl chloromethyl ketone. Proc Natl Acad Sci U S A. 1988 May;85(9):3184–3188. doi: 10.1073/pnas.85.9.3184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hewick R. M., Hunkapiller M. W., Hood L. E., Dreyer W. J. A gas-liquid solid phase peptide and protein sequenator. J Biol Chem. 1981 Aug 10;256(15):7990–7997. [PubMed] [Google Scholar]
  17. Hofsteenge J., Stone S. R. The effect of thrombomodulin on the cleavage of fibrinogen and fibrinogen fragments by thrombin. Eur J Biochem. 1987 Oct 1;168(1):49–56. doi: 10.1111/j.1432-1033.1987.tb13385.x. [DOI] [PubMed] [Google Scholar]
  18. Hofsteenge J., Taguchi H., Stone S. R. Effect of thrombomodulin on the kinetics of the interaction of thrombin with substrates and inhibitors. Biochem J. 1986 Jul 1;237(1):243–251. doi: 10.1042/bj2370243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hortin G. L., Trimpe B. L. Allosteric changes in thrombin's activity produced by peptides corresponding to segments of natural inhibitors and substrates. J Biol Chem. 1991 Apr 15;266(11):6866–6871. [PubMed] [Google Scholar]
  20. Jackman M. P., Parry M. A., Hofsteenge J., Stone S. R. Intrinsic fluorescence changes and rapid kinetics of the reaction of thrombin with hirudin. J Biol Chem. 1992 Aug 5;267(22):15375–15383. [PubMed] [Google Scholar]
  21. Jameson G. W., Roberts D. V., Adams R. W., Kyle W. S., Elmore D. T. Determination of the operational molarity of solutions of bovine alpha-chymotrypsin, trypsin, thrombin and factor Xa by spectrofluorimetric titration. Biochem J. 1973 Jan;131(1):107–117. doi: 10.1042/bj1310107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kawabata S., Morita T., Iwanaga S., Igarashi H. Staphylocoagulase-binding region in human prothrombin. J Biochem. 1985 Jan;97(1):325–331. doi: 10.1093/oxfordjournals.jbchem.a135057. [DOI] [PubMed] [Google Scholar]
  23. Kettner C., Mersinger L., Knabb R. The selective inhibition of thrombin by peptides of boroarginine. J Biol Chem. 1990 Oct 25;265(30):18289–18297. [PubMed] [Google Scholar]
  24. Kikumoto R., Tamao Y., Tezuka T., Tonomura S., Hara H., Ninomiya K., Hijikata A., Okamoto S. Selective inhibition of thrombin by (2R,4R)-4-methyl-1-[N2-[(3-methyl-1,2,3,4-tetrahydro-8-quinolinyl++ +) sulfonyl]-l-arginyl)]-2-piperidinecarboxylic acid. Biochemistry. 1984 Jan 3;23(1):85–90. doi: 10.1021/bi00296a014. [DOI] [PubMed] [Google Scholar]
  25. Le Bonniec B. F., Esmon C. T. Glu-192----Gln substitution in thrombin mimics the catalytic switch induced by thrombomodulin. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7371–7375. doi: 10.1073/pnas.88.16.7371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Liu L. W., Vu T. K., Esmon C. T., Coughlin S. R. The region of the thrombin receptor resembling hirudin binds to thrombin and alters enzyme specificity. J Biol Chem. 1991 Sep 15;266(26):16977–16980. [PubMed] [Google Scholar]
  27. Loewenthal R., Sancho J., Fersht A. R. Fluorescence spectrum of barnase: contributions of three tryptophan residues and a histidine-related pH dependence. Biochemistry. 1991 Jul 9;30(27):6775–6779. doi: 10.1021/bi00241a021. [DOI] [PubMed] [Google Scholar]
  28. Mao S. J., Yates M. T., Owen T. J., Krstenansky J. L. Interaction of hirudin with thrombin: identification of a minimal binding domain of hirudin that inhibits clotting activity. Biochemistry. 1988 Oct 18;27(21):8170–8173. doi: 10.1021/bi00421a027. [DOI] [PubMed] [Google Scholar]
  29. Naski M. C., Fenton J. W., 2nd, Maraganore J. M., Olson S. T., Shafer J. A. The COOH-terminal domain of hirudin. An exosite-directed competitive inhibitor of the action of alpha-thrombin on fibrinogen. J Biol Chem. 1990 Aug 15;265(23):13484–13489. [PubMed] [Google Scholar]
  30. Noé G., Hofsteenge J., Rovelli G., Stone S. R. The use of sequence-specific antibodies to identify a secondary binding site in thrombin. J Biol Chem. 1988 Aug 25;263(24):11729–11735. [PubMed] [Google Scholar]
  31. Rydel T. J., Ravichandran K. G., Tulinsky A., Bode W., Huber R., Roitsch C., Fenton J. W., 2nd The structure of a complex of recombinant hirudin and human alpha-thrombin. Science. 1990 Jul 20;249(4966):277–280. doi: 10.1126/science.2374926. [DOI] [PubMed] [Google Scholar]
  32. Schmitz T., Rothe M., Dodt J. Mechanism of the inhibition of alpha-thrombin by hirudin-derived fragments hirudin(1-47) and hirudin(45-65). Eur J Biochem. 1991 Jan 1;195(1):251–256. doi: 10.1111/j.1432-1033.1991.tb15701.x. [DOI] [PubMed] [Google Scholar]
  33. Skrzypczak-Jankun E., Carperos V. E., Ravichandran K. G., Tulinsky A., Westbrook M., Maraganore J. M. Structure of the hirugen and hirulog 1 complexes of alpha-thrombin. J Mol Biol. 1991 Oct 20;221(4):1379–1393. [PubMed] [Google Scholar]
  34. Stone S. R., Braun P. J., Hofsteenge J. Identification of regions of alpha-thrombin involved in its interaction with hirudin. Biochemistry. 1987 Jul 28;26(15):4617–4624. doi: 10.1021/bi00389a004. [DOI] [PubMed] [Google Scholar]
  35. Stone S. R., Hofsteenge J. Kinetics of the inhibition of thrombin by hirudin. Biochemistry. 1986 Aug 12;25(16):4622–4628. doi: 10.1021/bi00364a025. [DOI] [PubMed] [Google Scholar]
  36. Stürzebecher J., Markwardt F., Voigt B., Wagner G., Walsmann P. Cyclic amides of N alpha-arylsulfonylaminoacylated 4-amidinophenylalanine--tight binding inhibitors of thrombin. Thromb Res. 1983 Mar 15;29(6):635–642. doi: 10.1016/0049-3848(83)90218-9. [DOI] [PubMed] [Google Scholar]
  37. Suzuki K., Nishioka J. A thrombin-based peptide corresponding to the sequence of the thrombomodulin-binding site blocks the procoagulant activities of thrombin. J Biol Chem. 1991 Oct 5;266(28):18498–18501. [PubMed] [Google Scholar]
  38. Suzuki K., Nishioka J., Hayashi T. Localization of thrombomodulin-binding site within human thrombin. J Biol Chem. 1990 Aug 5;265(22):13263–13267. [PubMed] [Google Scholar]
  39. Vu T. K., Wheaton V. I., Hung D. T., Charo I., Coughlin S. R. Domains specifying thrombin-receptor interaction. Nature. 1991 Oct 17;353(6345):674–677. doi: 10.1038/353674a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES