Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Mar 15;290(Pt 3):731–734. doi: 10.1042/bj2900731

Effects of different enzymic treatments on the release of titin fragments from rabbit skeletal myofibrils. Purification of an 800 kDa titin polypeptide.

C Astier 1, J P Labbé 1, C Roustan 1, Y Benyamin 1
PMCID: PMC1132341  PMID: 8457201

Abstract

In myofibrils, titin (also called connectin) molecules span from Z line to M line and constitute a third filament system containing an elastic domain in the I band. This giant protein is particularly sensitive to proteolysis in situ. Treatment of rabbit skeletal myofibrils with exogenous proteinases induces a release of titin fragments, which are detected in the soluble myofibrillar fraction. The cleavage of titin occurs at specific points localized at the proximity of Z line and could lead to a concomitant release of alpha-actinin.

Full text

PDF
731

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astier C., Labbe J. P., Roustan C., Benyamin Y. Sarcomeric disorganization in post-mortem fish muscles. Comp Biochem Physiol B. 1991;100(3):459–465. doi: 10.1016/0305-0491(91)90204-q. [DOI] [PubMed] [Google Scholar]
  2. Fürst D. O., Osborn M., Nave R., Weber K. The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol. 1988 May;106(5):1563–1572. doi: 10.1083/jcb.106.5.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Goll D. E., Dayton W. R., Singh I., Robson R. M. Studies of the alpha-actinin/actin interaction in the Z-disk by using calpain. J Biol Chem. 1991 May 5;266(13):8501–8510. [PubMed] [Google Scholar]
  4. Higuchi H. Changes in contractile properties with selective digestion of connectin (titin) in skinned fibers of frog skeletal muscle. J Biochem. 1992 Mar;111(3):291–295. doi: 10.1093/oxfordjournals.jbchem.a123752. [DOI] [PubMed] [Google Scholar]
  5. Horowits R., Kempner E. S., Bisher M. E., Podolsky R. J. A physiological role for titin and nebulin in skeletal muscle. Nature. 1986 Sep 11;323(6084):160–164. doi: 10.1038/323160a0. [DOI] [PubMed] [Google Scholar]
  6. Horowits R., Maruyama K., Podolsky R. J. Elastic behavior of connectin filaments during thick filament movement in activated skeletal muscle. J Cell Biol. 1989 Nov;109(5):2169–2176. doi: 10.1083/jcb.109.5.2169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Horowits R., Podolsky R. J. The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments. J Cell Biol. 1987 Nov;105(5):2217–2223. doi: 10.1083/jcb.105.5.2217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Itoh Y., Suzuki T., Kimura S., Ohashi K., Higuchi H., Sawada H., Shimizu T., Shibata M., Maruyama K. Extensible and less-extensible domains of connectin filaments in stretched vertebrate skeletal muscle sarcomeres as detected by immunofluorescence and immunoelectron microscopy using monoclonal antibodies. J Biochem. 1988 Oct;104(4):504–508. doi: 10.1093/oxfordjournals.jbchem.a122499. [DOI] [PubMed] [Google Scholar]
  9. Koohmaraie M. The role of Ca(2+)-dependent proteases (calpains) in post mortem proteolysis and meat tenderness. Biochimie. 1992 Mar;74(3):239–245. doi: 10.1016/0300-9084(92)90122-u. [DOI] [PubMed] [Google Scholar]
  10. Kurzban G. P., Wang K. Giant polypeptides of skeletal muscle titin: sedimentation equilibrium in guanidine hydrochloride. Biochem Biophys Res Commun. 1988 Feb 15;150(3):1155–1161. doi: 10.1016/0006-291x(88)90750-4. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Lebart M. C., Méjean C., Boyer M., Roustan C., Benyamin Y. Localization of a new alpha-actinin binding site in the COOH-terminal part of actin sequence. Biochem Biophys Res Commun. 1990 Nov 30;173(1):120–126. doi: 10.1016/s0006-291x(05)81030-7. [DOI] [PubMed] [Google Scholar]
  13. Maruyama K., Kimura S., Ohashi K., Kuwano Y. Connectin, an elastic protein of muscle. Identification of "titin" with connectin. J Biochem. 1981 Mar;89(3):701–709. doi: 10.1093/oxfordjournals.jbchem.a133249. [DOI] [PubMed] [Google Scholar]
  14. Maruyama K., Kimura S., Yoshidomi H., Sawada H., Kikuchi M. Molecular size and shape of beta-connectin, an elastic protein of striated muscle. J Biochem. 1984 May;95(5):1423–1433. doi: 10.1093/oxfordjournals.jbchem.a134750. [DOI] [PubMed] [Google Scholar]
  15. Maruyama K., Natori R., Nonomura Y. New elastic protein from muscle. Nature. 1976 Jul 1;262(5563):58–60. doi: 10.1038/262058a0. [DOI] [PubMed] [Google Scholar]
  16. Maruyama K., Yoshioka T., Higuchi H., Ohashi K., Kimura S., Natori R. Connectin filaments link thick filaments and Z lines in frog skeletal muscle as revealed by immunoelectron microscopy. J Cell Biol. 1985 Dec;101(6):2167–2172. doi: 10.1083/jcb.101.6.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Matsumura K., Shimizu T., Nonaka I., Mannen T. Immunochemical study of connectin (titin) in neuromuscular diseases using a monoclonal antibody: connectin is degraded extensively in Duchenne muscular dystrophy. J Neurol Sci. 1989 Nov;93(2-3):147–156. doi: 10.1016/0022-510x(89)90185-8. [DOI] [PubMed] [Google Scholar]
  18. Matsuura T., Kimura S., Ohtsuka S., Maruyama K. Isolation and characterization of 1,200 kDa peptide of alpha-connectin. J Biochem. 1991 Oct;110(4):474–478. doi: 10.1093/oxfordjournals.jbchem.a123606. [DOI] [PubMed] [Google Scholar]
  19. Nave R., Fürst D. O., Weber K. Visualization of the polarity of isolated titin molecules: a single globular head on a long thin rod as the M band anchoring domain? J Cell Biol. 1989 Nov;109(5):2177–2187. doi: 10.1083/jcb.109.5.2177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pasdar M., Nelson W. J. Regulation of desmosome assembly in epithelial cells: kinetics of synthesis, transport, and stabilization of desmoglein I, a major protein of the membrane core domain. J Cell Biol. 1989 Jul;109(1):163–177. doi: 10.1083/jcb.109.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Takahashi K., Hattori A., Tatsumi R., Takai K. Calcium-induced splitting of connectin filaments into beta-connectin and a 1,200-kDa subfragment. J Biochem. 1992 Jun;111(6):778–782. doi: 10.1093/oxfordjournals.jbchem.a123835. [DOI] [PubMed] [Google Scholar]
  22. Takahashi K., Saito H. Post-mortem changes in skeletal muscle connectin. J Biochem. 1979 Jun;85(6):1539–1542. doi: 10.1093/oxfordjournals.jbchem.a132484. [DOI] [PubMed] [Google Scholar]
  23. Trinick J. Elastic filaments and giant proteins in muscle. Curr Opin Cell Biol. 1991 Feb;3(1):112–119. doi: 10.1016/0955-0674(91)90173-v. [DOI] [PubMed] [Google Scholar]
  24. Vidalenc P., Cottin P., Merdaci N., Ducastaing A. Stability of two Ca2+-dependent neutral proteinases and their specific inhibitor during post-mortem storage of rabbit skeletal muscle. J Sci Food Agric. 1983 Nov;34(11):1241–1250. doi: 10.1002/jsfa.2740341113. [DOI] [PubMed] [Google Scholar]
  25. Wang K., McClure J., Tu A. Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3698–3702. doi: 10.1073/pnas.76.8.3698. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES