Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Feb 15;290(Pt 1):75–83. doi: 10.1042/bj2900075

Catalytic-site characteristics of the porcine calpain II 80 kDa/18 kDa heterodimer revealed by selective reaction of its essential thiol group with two-hydronic-state time-dependent inhibitors: evidence for a catalytic site Cys/His interactive system and an ionizing modulatory group.

G W Mellor 1, S K Sreedharan 1, D Kowlessur 1, E W Thomas 1, K Brocklehurst 1
PMCID: PMC1132384  PMID: 8439300

Abstract

1. Four calpain II heterodimers (80 kDa/30 kDa, 80 kDa/29 kDa, 80 kDa/26 kDa and 80 kDa/18 kDa) were isolated from fresh porcine kidney by (NH4)2SO4 precipitation, chromatography on DEAE-Sepharose CL-6B and subsequently on Reactive Red 120/agarose followed by f.p.l.c. on a Q-Sepharose Hi-Load 16/10 column. 2. The major component (80 kDa/30 kDa) was used to provide the catalytically active calpain II 80 kDa/18 kDa heterodimer by treatment with CaCl2; titration with trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E64) in the presence of monothioglycerol showed the preparation to have 1.0 +/- 0.05 catalytic sites per molecule of heterodimer. 3. The 80 kDa/30 kDa heterodimer was separated from monothioglycerol and other low-molecular-mass material by gel filtration on Sephadex G-25 without loss of catalytic activity towards sulphanilic acid/azocasein in the presence of added Ca2+. On storage overnight at a concentration of 3 microM in KCl at 4 degrees C in the absence of Ca2+ the activator-free preparation still produced fully active 80 kDa/18 kDa heterodimer on addition of Ca2+. 4. Activator-free 80 kDa/30 kDa heterodimer (in the absence of Ca2+) reacts relatively slowly with ethyl 2-pyridyl disulphide at pH 5.9; over 5000 s five thiol groups per molecule react, all at similar rates. In the presence of 8 mM CaCl2 under otherwise identical conditions (and also in the pH range 3.8-10.4) an initial faster phase of reaction corresponding to approx. one thiol group per molecule of heterodimer is generated, but it is not cleanly separated from the subsequent slower reactions on the stopped-flow trace. This fast phase of reaction does not occur when E64-inactivated calpain II is substituted for active 80 kDa/18 kDa heterodimer. 5. Greatly improved resolution of the fast phase of reaction involving the catalytic-site thiol group was achieved by using 2,2'-dipyridyl disulphide (2-Py-S-S-2-Py) instead of ethyl 2-pyridyl disulphide. 6. The pH-dependence of the second-order rate constant (k) for the reaction of the catalytically active activator-free 80 kDa/18 kDa calpain II heterodimer with 2-Py-S-S-2-Py was studied by stopped-flow spectral analysis in the pH range approx. 3-8 without interference from reactions of other thiol groups. 7. The form of the pH-k profile establishes for the first time the existence of an interactive catalytic site system [probably containing a (Cys)-S-/(His)-Im+H ion pair] analogous to those present in monomeric non-Ca(2+)-activated cysteine proteinases.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
75

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angelides K. J., Fink A. L. Mechanism of Action of papain with a specific anilide substrate. Biochemistry. 1979 May 29;18(11):2355–2363. doi: 10.1021/bi00578a034. [DOI] [PubMed] [Google Scholar]
  2. Angelides K. J., Fink A. L. Mechanism of thiol protease catalysis: detection and stabilization of a tetrahedral intermediate in papain catalysis. Biochemistry. 1979 May 29;18(11):2363–2369. doi: 10.1021/bi00578a035. [DOI] [PubMed] [Google Scholar]
  3. Angliker H., Anagli J., Shaw E. Inactivation of calpain by peptidyl fluoromethyl ketones. J Med Chem. 1992 Jan 24;35(2):216–220. doi: 10.1021/jm00080a003. [DOI] [PubMed] [Google Scholar]
  4. Brocklehurst K., Baines B. S., Malthouse J. P. Differences in the interaction of the catalytic groups of the active centres of actinidin and papain. Rapid purification of fully active actinidin by covalent chromatography and characterization of its active centre by use of two-protonic-state reactivity probes. Biochem J. 1981 Sep 1;197(3):739–746. doi: 10.1042/bj1970739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brocklehurst K., Brocklehurst S. M., Kowlessur D., O'Driscoll M., Patel G., Salih E., Templeton W., Thomas E., Topham C. M., Willenbrock F. Supracrystallographic resolution of interactions contributing to enzyme catalysis by use of natural structural variants and reactivity-probe kinetics. Biochem J. 1988 Dec 1;256(2):543–558. doi: 10.1042/bj2560543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brocklehurst K., Little G. Reactions of papain and of low-molecular-weight thiols with some aromatic disulphides. 2,2'-Dipyridyl disulphide as a convenient active-site titrant for papain even in the presence of other thiols. Biochem J. 1973 May;133(1):67–80. doi: 10.1042/bj1330067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brocklehurst K., Malthouse J. P. Evidence for a two-state transition in papain that may have no close analogue in ficin. Differences in the disposition of cationic sites and hydrophobic binding areas in the active centres of papain and ficin. Biochem J. 1980 Dec 1;191(3):707–718. doi: 10.1042/bj1910707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brocklehurst K. Two-protonic-state electrophiles as probes of enzyme mechanisms. Methods Enzymol. 1982;87:427–469. doi: 10.1016/s0076-6879(82)87026-2. [DOI] [PubMed] [Google Scholar]
  9. Brocklehurst S. M., Brocklehurst K. Appendix: Analysis of pH-dependent kinetics in up to four reactive hydronic states. Biochem J. 1988 Dec 1;256(2):556–558. doi: 10.1042/bj2560556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brocklehurst S. M., Topham C. M., Brocklehurst K. A general kinetic equation for multihydronic state reactions and rapid procedures for parameter evaluation. Biochem Soc Trans. 1990 Aug;18(4):598–600. doi: 10.1042/bst0180598. [DOI] [PubMed] [Google Scholar]
  11. Crawford C., Brown N. R., Willis A. C. Investigation of the structural basis of the interaction of calpain II with phospholipid and with carbohydrate. Biochem J. 1990 Jan 15;265(2):575–579. doi: 10.1042/bj2650575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Croall D. E., DeMartino G. N. Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol Rev. 1991 Jul;71(3):813–847. doi: 10.1152/physrev.1991.71.3.813. [DOI] [PubMed] [Google Scholar]
  13. Iwamoto N., Thangnipon W., Crawford C., Emson P. C. Localization of calpain immunoreactivity in senile plaques and in neurones undergoing neurofibrillary degeneration in Alzheimer's disease. Brain Res. 1991 Oct 4;561(1):177–180. doi: 10.1016/0006-8993(91)90766-o. [DOI] [PubMed] [Google Scholar]
  14. Kowlessur D., O'Driscoll M., Topham C. M., Templeton W., Thomas E. W., Brocklehurst K. The interplay of electrostatic fields and binding interactions determining catalytic-site reactivity in actinidin. A possible origin of differences in the behaviour of actinidin and papain. Biochem J. 1989 Apr 15;259(2):443–452. doi: 10.1042/bj2590443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kowlessur D., Topham C. M., Thomas E. W., O'Driscoll M., Templeton W., Brocklehurst K. Identification of signalling and non-signalling binding contributions to enzyme reactivity. Alternative combinations of binding interactions provide for change in transition-state geometry in reactions of papain. Biochem J. 1989 Mar 15;258(3):755–764. doi: 10.1042/bj2580755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kurtzman G. J., Platanias L., Lustig L., Frickhofen N., Young N. S. Feline parvovirus propagates in cat bone marrow cultures and inhibits hematopoietic colony formation in vitro. Blood. 1989 Jul;74(1):71–81. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Malthouse J. P., Brocklehurst K. Preparation of fully active ficin from Ficus glabrata by covalent chromatography and characterization of its active centre by using 2,2'-depyridyl disulphide as a reactivity probe. Biochem J. 1976 Nov;159(2):221–234. doi: 10.1042/bj1590221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mehdi S. Cell-penetrating inhibitors of calpain. Trends Biochem Sci. 1991 Apr;16(4):150–153. doi: 10.1016/0968-0004(91)90058-4. [DOI] [PubMed] [Google Scholar]
  20. Mellgren R. L. Calcium-dependent proteases: an enzyme system active at cellular membranes? FASEB J. 1987 Aug;1(2):110–115. doi: 10.1096/fasebj.1.2.2886390. [DOI] [PubMed] [Google Scholar]
  21. Melloni E., Pontremoli S. The calpains. Trends Neurosci. 1989 Nov;12(11):438–444. doi: 10.1016/0166-2236(89)90093-3. [DOI] [PubMed] [Google Scholar]
  22. Murachi T. Intracellular regulatory system involving calpain and calpastatin. Biochem Int. 1989 Feb;18(2):263–294. [PubMed] [Google Scholar]
  23. Ménard R., Khouri H. E., Plouffe C., Dupras R., Ripoll D., Vernet T., Tessier D. C., Lalberté F., Thomas D. Y., Storer A. C. A protein engineering study of the role of aspartate 158 in the catalytic mechanism of papain. Biochemistry. 1990 Jul 17;29(28):6706–6713. doi: 10.1021/bi00480a021. [DOI] [PubMed] [Google Scholar]
  24. Ménard R., Khouri H. E., Plouffe C., Laflamme P., Dupras R., Vernet T., Tessier D. C., Thomas D. Y., Storer A. C. Importance of hydrogen-bonding interactions involving the side chain of Asp158 in the catalytic mechanism of papain. Biochemistry. 1991 Jun 4;30(22):5531–5538. doi: 10.1021/bi00236a028. [DOI] [PubMed] [Google Scholar]
  25. Ménard R., Plouffe C., Khouri H. E., Dupras R., Tessier D. C., Vernet T., Thomas D. Y., Storer A. C. Removal of an inter-domain hydrogen bond through site-directed mutagenesis: role of serine 176 in the mechanism of papain. Protein Eng. 1991 Feb;4(3):307–311. doi: 10.1093/protein/4.3.307. [DOI] [PubMed] [Google Scholar]
  26. Nagy B., Samaha F. J. Membrane defects in Duchenne dystrophy: protease affecting sarcoplasmic reticulum. Ann Neurol. 1986 Jul;20(1):50–56. doi: 10.1002/ana.410200109. [DOI] [PubMed] [Google Scholar]
  27. Nixon R. A., Clarke J. F., Logvinenko K. B., Tan M. K., Hoult M., Grynspan F. Aluminum inhibits calpain-mediated proteolysis and induces human neurofilament proteins to form protease-resistant high molecular weight complexes. J Neurochem. 1990 Dec;55(6):1950–1959. doi: 10.1111/j.1471-4159.1990.tb05781.x. [DOI] [PubMed] [Google Scholar]
  28. Parkes C., Kembhavi A. A., Barrett A. J. Calpain inhibition by peptide epoxides. Biochem J. 1985 Sep 1;230(2):509–516. doi: 10.1042/bj2300509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pickersgill R. W., Goodenough P. W., Sumner I. G., Collins M. E. The electrostatic fields in the active-site clefts of actinidin and papain. Biochem J. 1988 Aug 15;254(1):235–238. doi: 10.1042/bj2540235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pickersgill R. W., Sumner I. G., Collins M. E., Goodenough P. W. Structural and electrostatic differences between actinidin and papain account for differences in activity. Biochem J. 1989 Jan 1;257(1):310–312. doi: 10.1042/bj2570310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Salih E., Malthouse J. P., Kowlessur D., Jarvis M., O'Driscoll M., Brocklehurst K. Differences in the chemical and catalytic characteristics of two crystallographically 'identical' enzyme catalytic sites. Characterization of actinidin and papain by a combination of pH-dependent substrate catalysis kinetics and reactivity probe studies targeted on the catalytic-site thiol group and its immediate microenvironment. Biochem J. 1987 Oct 1;247(1):181–193. doi: 10.1042/bj2470181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schollmeyer J. E. Calpain II involvement in mitosis. Science. 1988 May 13;240(4854):911–913. doi: 10.1126/science.2834825. [DOI] [PubMed] [Google Scholar]
  33. Shipton M., Brochlehurst K. Characterization of the papain active centre by using two-protonic-state electrophiles as reactivity probes. Evidence for nucleophilic reactivity in the un-interrupted cysteine-25-histidine-159 interactive system. Biochem J. 1978 May 1;171(2):385–401. doi: 10.1042/bj1710385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stuchbury T., Shipton M., Norris R., Malthouse J. P., Brocklehurst K., Herbert J. A., Suschitzky H. A reporter group delivery system with both absolute and selective specificity for thiol groups and an improved fluorescent probe containing the 7-nitrobenzo-2-oxa-1,3-diazole moiety. Biochem J. 1975 Nov;151(2):417–432. doi: 10.1042/bj1510417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sugita H., Ishiura S., Suzuki K., Imahori K. Inhibition of epoxide derivatives on chicken calcium-activated neutral protease (CANP) in vitro and in vivo. J Biochem. 1980 Jan;87(1):339–341. doi: 10.1093/oxfordjournals.jbchem.a132742. [DOI] [PubMed] [Google Scholar]
  36. Suzuki K., Hayashi H., Hayashi T., Iwai K. Amino acid sequence around the active site cysteine residue of calcium-activated neutral protease (CANP). FEBS Lett. 1983 Feb 7;152(1):67–70. doi: 10.1016/0014-5793(83)80483-9. [DOI] [PubMed] [Google Scholar]
  37. Suzuki K. Reaction of calcium-activated neutral protease (CANP) with an epoxysuccinyl derivative (E64c) and iodoacetic acid. J Biochem. 1983 May;93(5):1305–1312. doi: 10.1093/oxfordjournals.jbchem.a134264. [DOI] [PubMed] [Google Scholar]
  38. Topham C. M., Salih E., Frazao C., Kowlessur D., Overington J. P., Thomas M., Brocklehurst S. M., Patel M., Thomas E. W., Brocklehurst K. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis. Biochem J. 1991 Nov 15;280(Pt 1):79–92. doi: 10.1042/bj2800079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wang K. K. Developing selective inhibitors of calpain. Trends Pharmacol Sci. 1990 Apr;11(4):139–142. doi: 10.1016/0165-6147(90)90060-L. [DOI] [PubMed] [Google Scholar]
  40. Willenbrock F., Brocklehurst K. Preparation of cathepsins B and H by covalent chromatography and characterization of their catalytic sites by reaction with a thiol-specific two-protonic-state reactivity probe. Kinetic study of cathepsins B and H extending into alkaline media and a rapid spectroscopic titration of cathepsin H at pH 3-4. Biochem J. 1985 Apr 15;227(2):511–519. doi: 10.1042/bj2270511. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES