Abstract
In order to characterize the biological functions coupled to cholecystokinin (CCK) A and B receptors, the effects of gastrin(2-17 ds) and caerulein were compared. An isolated cell model, the pancreatic acinar cell line AR4-2J, was used and the experiments were carried out in serum-free media. Caerulein was found to evoke no mitogenic effects either alone or in the presence of the CCK antagonists L364,718 and CR1409. Gastrin(2-17 ds) increased cell proliferation by 2-fold with an IC50 of 150 pM, corresponding to the occupancy of the CCK B receptors. CR1409, at concentrations that fully occupied CCK B receptors, inhibited the gastrin(2-17 ds) effects. Caerulein enhanced chymotrypsinogen biosynthesis by 100% and the corresponding mRNA level by 75%; amylase biosynthesis and mRNA level were enhanced by 40% only. Half-maximal increases in chymotrypsin activity and mRNA level were recorded in response to caerulein at concentrations of 100 pM and 50 pM respectively. Gastrin(2-17 ds) at 100 nM enhanced chymotrypsinogen biosynthesis by 26% and its mRNA level by 35%; these responses were lower than those evoked by 0.1 nM caerulein. Furthermore, CR1409 completely inhibited caerulein- and gastrin(2-17 ds)-stimulated chymotrypsinogen synthesis, with similar IC50 (4 microM). These results suggest that both peptides induced the synthesis of the secretory enzyme after occupancy of CCK A receptors.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrowman J. A., Mayston P. D. Proceedings: The trophic influence of cholecystokinin on the rat pancreas. J Physiol. 1974 Apr;238(1):73P–75P. [PubMed] [Google Scholar]
- Burnham D. B., Williams J. A. Effects of high concentrations of secretagogues on the morphology and secretory activity of the pancreas: a role for microfilaments. Cell Tissue Res. 1982;222(1):201–212. doi: 10.1007/BF00218300. [DOI] [PubMed] [Google Scholar]
- Chang R. S., Lotti V. J., Monaghan R. L., Birnbaum J., Stapley E. O., Goetz M. A., Albers-Schönberg G., Patchett A. A., Liesch J. M., Hensens O. D. A potent nonpeptide cholecystokinin antagonist selective for peripheral tissues isolated from Aspergillus alliaceus. Science. 1985 Oct 11;230(4722):177–179. doi: 10.1126/science.2994227. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Dakka N., Wicker C., Puigserver A. Specific response of serine protease mRNA to a protein-free diet in the rat pancreas. Eur J Biochem. 1988 Sep 1;176(1):231–236. doi: 10.1111/j.1432-1033.1988.tb14273.x. [DOI] [PubMed] [Google Scholar]
- Estival A., Pradel P., Wicker-Planquart C., Vaysse N., Puigserver A., Clemente F. Regulation of amylase and chymotrypsinogen expression by dexamethasone and caerulein in serum-free-cultured pancreatic acinar AR4-2J cells. Influence of glucose. Biochem J. 1991 Oct 1;279(Pt 1):197–201. doi: 10.1042/bj2790197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans B. E., Bock M. G., Rittle K. E., DiPardo R. M., Whitter W. L., Veber D. F., Anderson P. S., Freidinger R. M. Design of potent, orally effective, nonpeptidal antagonists of the peptide hormone cholecystokinin. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4918–4922. doi: 10.1073/pnas.83.13.4918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fourmy D., Zahidi A., Fabre R., Guidet M., Pradayrol L., Ribet A. Receptors for cholecystokinin and gastrin peptides display specific binding properties and are structurally different in guinea-pig and dog pancreas. Eur J Biochem. 1987 Jun 15;165(3):683–692. doi: 10.1111/j.1432-1033.1987.tb11495.x. [DOI] [PubMed] [Google Scholar]
- Fourmy D., Zahidi A., Pradayrol L., Vayssette J., Ribet A. Relationship of CCK/gastrin receptor binding to amylase release in dog pancreatic acini. Regul Pept. 1984 Dec;10(1):57–68. doi: 10.1016/0167-0115(84)90053-3. [DOI] [PubMed] [Google Scholar]
- HUMMEL B. C. A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. Can J Biochem Physiol. 1959 Dec;37:1393–1399. [PubMed] [Google Scholar]
- Kusyk C. J., McNiel N. O., Johnson L. R. Stimulation of growth of a colon cancer cell line by gastrin. Am J Physiol. 1986 Nov;251(5 Pt 1):G597–G601. doi: 10.1152/ajpgi.1986.251.5.G597. [DOI] [PubMed] [Google Scholar]
- Logsdon C. D., Akana S. F., Meyer C., Dallman M. F., Williams J. A. Pancreatic acinar cell amylase gene expression: selective effects of adrenalectomy and corticosterone replacement. Endocrinology. 1987 Oct;121(4):1242–1250. doi: 10.1210/endo-121-4-1242. [DOI] [PubMed] [Google Scholar]
- Logsdon C. D., Moessner J., Williams J. A., Goldfine I. D. Glucocorticoids increase amylase mRNA levels, secretory organelles, and secretion in pancreatic acinar AR42J cells. J Cell Biol. 1985 Apr;100(4):1200–1208. doi: 10.1083/jcb.100.4.1200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacDonald R. J., Crerar M. M., Swain W. F., Pictet R. L., Thomas G., Rutter W. J. Structure of a family of rat amylase genes. Nature. 1980 Sep 11;287(5778):117–122. doi: 10.1038/287117a0. [DOI] [PubMed] [Google Scholar]
- Majumdar A. P. Role of tyrosine kinases in gastrin induction of ornithine decarboxylase in colonic mucosa. Am J Physiol. 1990 Oct;259(4 Pt 1):G626–G630. doi: 10.1152/ajpgi.1990.259.4.G626. [DOI] [PubMed] [Google Scholar]
- Matozaki T., Göke B., Tsunoda Y., Rodriguez M., Martinez J., Williams J. A. Two functionally distinct cholecystokinin receptors show different modes of action on Ca2+ mobilization and phospholipid hydrolysis in isolated rat pancreatic acini. Studies using a new cholecystokinin analog, JMV-180. J Biol Chem. 1990 Apr 15;265(11):6247–6254. [PubMed] [Google Scholar]
- Renaud W., Giorgi D., Iovanna J., Dagorn J. C. Regulation of concentrations of mRNA for amylase, trypsinogen I and chymotrypsinogen B in rat pancreas by secretagogues. Biochem J. 1986 Apr 1;235(1):305–308. doi: 10.1042/bj2350305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scemama J. L., De Vries L., Pradayrol L., Seva C., Tronchere H., Vaysse N. Cholecystokinin and gastrin peptides stimulate ODC activity in a rat pancreatic cell line. Am J Physiol. 1989 May;256(5 Pt 1):G846–G850. doi: 10.1152/ajpgi.1989.256.5.G846. [DOI] [PubMed] [Google Scholar]
- Scemama J. L., Fourmy D., Zahidi A., Pradayrol L., Susini C., Ribet A. Characterisation of gastrin receptors on a rat pancreatic acinar cell line (AR42J). A possible model for studying gastrin mediated cell growth and proliferation. Gut. 1987;28 (Suppl):233–236. doi: 10.1136/gut.28.suppl.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seva C., Scemama J. L., Bastié M. J., Pradayrol L., Vaysse N. Lorglumide and loxiglumide inhibit gastrin-stimulated DNA synthesis in a rat tumoral acinar pancreatic cell line (AR42J). Cancer Res. 1990 Sep 15;50(18):5829–5833. [PubMed] [Google Scholar]
- Watson S., Durrant L., Elston P., Morris D. Inhibitory effects of the gastrin receptor antagonist (L-365,260) on gastrointestinal tumor cells. Cancer. 1991 Sep 15;68(6):1255–1260. doi: 10.1002/1097-0142(19910915)68:6<1255::aid-cncr2820680613>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
- Wicker C., Puigserver A., Rausch U., Scheele G., Kern H. Multiple-level caerulein control of the gene expression of secretory proteins in the rat pancreas. Eur J Biochem. 1985 Sep 16;151(3):461–466. doi: 10.1111/j.1432-1033.1985.tb09124.x. [DOI] [PubMed] [Google Scholar]
- Younes M., Jensen R. T., Gardner J. D. Cholecystokinin-induced residual stimulation of enzyme secretion from mouse pancreatic acini. Biochim Biophys Acta. 1987 Oct 1;930(3):410–418. doi: 10.1016/0167-4889(87)90014-0. [DOI] [PubMed] [Google Scholar]
- Yu D. H., Noguchi M., Zhou Z. C., Villanueva M. L., Gardner J. D., Jensen R. T. Characterization of gastrin receptors on guinea pig pancreatic acini. Am J Physiol. 1987 Dec;253(6 Pt 1):G793–G801. doi: 10.1152/ajpgi.1987.253.6.G793. [DOI] [PubMed] [Google Scholar]