Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Feb 15;290(Pt 1):237–240. doi: 10.1042/bj2900237

Folate transport in intestinal brush border membrane: involvement of essential histidine residue(s).

H M Said 1, R Mohammadkhani 1
PMCID: PMC1132406  PMID: 8439292

Abstract

We examined the possible existence of histidine residue(s) in the folate transporter of rabbit intestine. This was done with use of the histidine-specific reagent diethyl pyrocarbonate (DEPC) and purified intestinal brush-border-membrane vesicles. DEPC caused significant concentration- and time-dependent inhibition of folic acid transport. The inhibition was only seen when transport was examined in vesicles incubated in buffer at pH 5.2 and not in those incubated in buffer at pH 7.4. The addition of unlabelled folic acid to vesicle suspension before treatment with DEPC (2.5 mM) led to a significant (P < 0.01) protection (84%) against the inhibition of folic acid transport. Treating vesicles pretreated with DEPC (2.5 mM) with reducing reagents (dithiothreitol, 2-mercaptoethanol and 2,3-dimercaptopropanol, all at a final concentration of 10 mM) did not reverse the inhibitory effect of DEPC on folic acid transport. On the other hand, treating the DEPC-pretreated vesicles with hydroxylamine (140 mM) led to a significant reversal (P < 0.01) (54%) of the inhibition of folic acid transport. The inhibitory effect of DEPC on carrier-mediated folic acid transport was found to be mediated through a decrease in the Vmax. (i.e. a decrease in the number and/or activity) of the carriers and an increase in the apparent Km (i.e. a decrease in their affinity), classifying the effect as a mixed-type inhibition. These results demonstrate the existence of critical histidine residue(s) in the intestinal brush-border-membrane folate transporter which is essential for its interaction with, and transport of, the vitamin. These findings also suggest that the histidine residue(s) is located at (or near) the substrate-binding site.

Full text

PDF
237

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson P. S., Suhm M. A., Nee J. Interaction of external H+ with the Na+-H+ exchanger in renal microvillus membrane vesicles. J Biol Chem. 1983 Jun 10;258(11):6767–6771. [PubMed] [Google Scholar]
  2. Bindslev N., Wright E. M. Histidyl residues at the active site of the Na/succinate co-transporter in rabbit renal brush borders. J Membr Biol. 1984;81(2):159–170. doi: 10.1007/BF01868980. [DOI] [PubMed] [Google Scholar]
  3. Hahn A., Daniel H., Rehner G. Transport of pteroylglutamic acid into brush border membrane vesicles from rat small intestine is a partially carrier-mediated process. Z Ernahrungswiss. 1991 Sep;30(3):201–213. doi: 10.1007/BF01610343. [DOI] [PubMed] [Google Scholar]
  4. Hopfer U., Nelson K., Perrotto J., Isselbacher K. J. Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem. 1973 Jan 10;248(1):25–32. [PubMed] [Google Scholar]
  5. Kaplan R. S., Mayor J. A., Johnston N., Oliveira D. L. Purification and characterization of the reconstitutively active tricarboxylate transporter from rat liver mitochondria. J Biol Chem. 1990 Aug 5;265(22):13379–13385. [PubMed] [Google Scholar]
  6. Kessler M., Acuto O., Storelli C., Murer H., Müller M., Semenza G. A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Their use in investigating some properties of D-glucose and choline transport systems. Biochim Biophys Acta. 1978 Jan 4;506(1):136–154. doi: 10.1016/0005-2736(78)90440-6. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Miles E. W. Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol. 1977;47:431–442. doi: 10.1016/0076-6879(77)47043-5. [DOI] [PubMed] [Google Scholar]
  9. Miyamoto Y., Ganapathy V., Leibach F. H. Identification of histidyl and thiol groups at the active site of rabbit renal dipeptide transporter. J Biol Chem. 1986 Dec 5;261(34):16133–16140. [PubMed] [Google Scholar]
  10. Padan E., Patel L., Kaback H. R. Effect of diethylpyrocarbonate on lactose/proton symport in Escherichia coli membrane vesicles. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6221–6225. doi: 10.1073/pnas.76.12.6221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Peerce B. E. Identification of the intestinal Na-phosphate cotransporter. Am J Physiol. 1989 Apr;256(4 Pt 1):G645–G652. doi: 10.1152/ajpgi.1989.256.4.G645. [DOI] [PubMed] [Google Scholar]
  12. Said H. M., Derweesh I. Carrier-mediated mechanism for biotin transport in rabbit intestine: studies with brush-border membrane vesicles. Am J Physiol. 1991 Jul;261(1 Pt 2):R94–R97. doi: 10.1152/ajpregu.1991.261.1.R94. [DOI] [PubMed] [Google Scholar]
  13. Said H. M., Ghishan F. K., Murrell J. E. Ontogenesis of intestinal transport of 5-methyltetrahydrofolate in the rat. Am J Physiol. 1985 Nov;249(5 Pt 1):G567–G571. doi: 10.1152/ajpgi.1985.249.5.G567. [DOI] [PubMed] [Google Scholar]
  14. Said H. M., Ghishan F. K., Redha R. Folate transport by human intestinal brush-border membrane vesicles. Am J Physiol. 1987 Feb;252(2 Pt 1):G229–G236. doi: 10.1152/ajpgi.1987.252.2.G229. [DOI] [PubMed] [Google Scholar]
  15. Said H. M., Mohammadkhani R. Involvement of histidine residues and sulfhydryl groups in the function of the biotin transport carrier of rabbit intestinal brush-border membrane. Biochim Biophys Acta. 1992 Jun 30;1107(2):238–244. doi: 10.1016/0005-2736(92)90410-n. [DOI] [PubMed] [Google Scholar]
  16. Said H. M., Strum W. B. A pH-dependent, carrier-mediated system for transport of 5-methyltetrahydrofolate in rat jejunum. J Pharmacol Exp Ther. 1983 Jul;226(1):95–99. [PubMed] [Google Scholar]
  17. Schron C. M., Washington C., Jr, Blitzer B. L. The transmembrane pH gradient drives uphill folate transport in rabbit jejunum. Direct evidence for folate/hydroxyl exchange in brush border membrane vesicles. J Clin Invest. 1985 Nov;76(5):2030–2033. doi: 10.1172/JCI112205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Selhub J., Dhar G. J., Rosenberg I. H. Gastrointestinal absorption of folates and antifolates. Pharmacol Ther. 1983;20(3):397–418. doi: 10.1016/0163-7258(83)90034-7. [DOI] [PubMed] [Google Scholar]
  19. Selhub J., Rosenberg I. H. Folate transport in isolated brush border membrane vesicles from rat intestine. J Biol Chem. 1981 May 10;256(9):4489–4493. [PubMed] [Google Scholar]
  20. Strum W. B. A pH-dependent, carrier-mediated transport system for the folate analog, amethopterin, in rat jejunum. J Pharmacol Exp Ther. 1977 Dec;203(3):640–645. [PubMed] [Google Scholar]
  21. Strum W. B. Characteristics of the transport of pteroylglutamate and amethopterin in rat jejunum. J Pharmacol Exp Ther. 1981 Feb;216(2):329–333. [PubMed] [Google Scholar]
  22. Strum W. B. Enzymatic reduction and methylation of folate following pH-dependent, carrier-mediated transport in rat jejunum. Biochim Biophys Acta. 1979 Jun 13;554(1):249–257. doi: 10.1016/0005-2736(79)90022-1. [DOI] [PubMed] [Google Scholar]
  23. Zimmerman W. B., Byun E., McKinney T. D., Sokol P. P. Sulfhydryl groups are essential for organic cation exchange in rabbit renal basolateral membrane vesicles. J Biol Chem. 1991 Mar 25;266(9):5459–5463. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES