Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 May 1;291(Pt 3):825–831. doi: 10.1042/bj2910825

Influence of arachidonic acid on indices of phospholipase A2 activity in the human neutrophil.

J D Winkler 1, C M Sung 1, W C Hubbard 1, F H Chilton 1
PMCID: PMC1132443  PMID: 8387780

Abstract

The present studies were conducted to understand better the regulation of phospholipase A2 (PLA2)-dependent mobilization of lipid mediators by arachidonic acid (C20:4). After stimulation of human neutrophils, g.l.c./m.s. analysis of non-esterified fatty acids indicated that the quantity of C20:4 increased as a function of time after stimulation, from undetectable quantities to > 800 pmol/10(7) cells. In contrast with C20:4, the quantities of other free fatty acids such as oleic and linoleic were high in resting cells and did not change after stimulation. Some 15% of the C20:4 released from cellular lipids remained cell-associated. To examine the effect of C20:4 on its own release, neutrophils were exposed to [2H8]C20:4, to differentiate it by g.l.c./m.s. from naturally occurring C20:4. In A23187-stimulated neutrophils, low concentrations (5-10 microM) of [2H8]C20:4 added just before A23187 increased the quantity of C20:4 produced by the cell, whereas higher concentrations (30-50 microM) decreased the quantity of C20:4 released from phospholipids. As other measures of PLA2 activity, the effects of C20:4 on production of platelet-activity factor (PAF) and leukotriene B4 (LTB4) were assessed. C20:4 treatment just before stimulation of neutrophils blocked PAF and LTB4 production in a concentration-dependent manner (IC50 10-20 microM). The effect of C20:4 was not blocked by the cyclo-oxygenase inhibitor naproxine (10 microM), nor could it be mimicked by 1 microM LTB4, 5-hydroxyeicosa-6,8,11,14-tetraenoic acid (5HETE), 5-hydroperoxyeicosa-6,8,11,14-tetraenoic acid (5HPETE) or 15-hydroxyeicosa-5,8,11,13-tetraenoic acid (15HETE). The 5-lipoxygenase (5LO) inhibitor zileuton induced a concentration-dependent decrease in PAF, with a maximal effect of a 50% decrease at 10-50 microM. The decrease in PAF by the 5LO inhibitor could not be circumvented by addition of 1 microM 5HETE, 5HPETE and LTB4, and may be attributed to the capacity of zileuton to increase the quantity of C20:4 in A23187-treated neutrophils. The inhibitory effect of C20:4 (20-40 microM) on PAF production could be antagonized by the protein kinase C inhibitor staurosporine (30 nM), but not by inhibitors of protein kinase A, tyrosine kinase or calmodulin kinase II. Taken together, these data demonstrate that C20:4 is selectively released from membrane phospholipids of A23187-stimulated neutrophils, and this C20:4 may play an important role in regulating the mobilization of C20:4 by altering PLA2 activity.

Full text

PDF
825

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson S. B., Leszczynska-Piziak J., Weissmann G. Arachidonic acid as a second messenger. Interactions with a GTP-binding protein of human neutrophils. J Immunol. 1991 Jul 1;147(1):231–236. [PubMed] [Google Scholar]
  2. Alonso F., Henson P. M., Leslie C. C. A cytosolic phospholipase in human neutrophils that hydrolyzes arachidonoyl-containing phosphatidylcholine. Biochim Biophys Acta. 1986 Sep 12;878(2):273–280. doi: 10.1016/0005-2760(86)90156-6. [DOI] [PubMed] [Google Scholar]
  3. Ando M., Furui H., Suzuki K., Taki F., Takagi K. Direct activation of phospholipase A2 by GTP-binding protein in human peripheral polymorphonuclear leukocytes. Biochem Biophys Res Commun. 1992 Mar 16;183(2):708–713. doi: 10.1016/0006-291x(92)90540-2. [DOI] [PubMed] [Google Scholar]
  4. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  5. Bakken A. M., Farstad M., Holmsen H. Identity between palmitoyl-CoA synthetase and arachidonoyl-CoA synthetase in human platelet? Biochem J. 1991 Feb 15;274(Pt 1):145–152. doi: 10.1042/bj2740145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ballou L. R., Cheung W. Y. Inhibition of human platelet phospholipase A2 activity by unsaturated fatty acids. Proc Natl Acad Sci U S A. 1985 Jan;82(2):371–375. doi: 10.1073/pnas.82.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Basudev H., Jones P. M., Persaud S. J., Howell S. L. Arachidonic acid induces phosphorylation of an 18 kDa protein in electrically permeabilised rat islets of Langerhans. FEBS Lett. 1992 Jan 13;296(1):69–72. doi: 10.1016/0014-5793(92)80405-6. [DOI] [PubMed] [Google Scholar]
  8. Billah M. M., Bryant R. W., Siegel M. I. Lipoxygenase products of arachidonic acid modulate biosynthesis of platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) by human neutrophils via phospholipase A2. J Biol Chem. 1985 Jun 10;260(11):6899–6906. [PubMed] [Google Scholar]
  9. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  10. Carter G. W., Young P. R., Albert D. H., Bouska J., Dyer R., Bell R. L., Summers J. B., Brooks D. W. 5-lipoxygenase inhibitory activity of zileuton. J Pharmacol Exp Ther. 1991 Mar;256(3):929–937. [PubMed] [Google Scholar]
  11. Chilton F. H., Cluzel M., Triggiani M. Recent advances in our understanding of the biochemical interactions between platelet-activating factor and arachidonic acid. Lipids. 1991 Dec;26(12):1021–1027. doi: 10.1007/BF02536495. [DOI] [PubMed] [Google Scholar]
  12. Chilton F. H., Connell T. R. 1-ether-linked phosphoglycerides. Major endogenous sources of arachidonate in the human neutrophil. J Biol Chem. 1988 Apr 15;263(11):5260–5265. [PubMed] [Google Scholar]
  13. Chilton F. H., Ellis J. M., Olson S. C., Wykle R. L. 1-O-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine. A common source of platelet-activating factor and arachidonate in human polymorphonuclear leukocytes. J Biol Chem. 1984 Oct 10;259(19):12014–12019. [PubMed] [Google Scholar]
  14. Chilton F. H., Murphy R. C. Remodeling of arachidonate-containing phosphoglycerides within the human neutrophil. J Biol Chem. 1986 Jun 15;261(17):7771–7777. [PubMed] [Google Scholar]
  15. Chilton F. H., Murphy R. C. Stimulated production and natural occurrence of 1,2-diarachidonoylglycerophosphocholine in human neutrophils. Biochem Biophys Res Commun. 1987 Jun 30;145(3):1126–1133. doi: 10.1016/0006-291x(87)91554-3. [DOI] [PubMed] [Google Scholar]
  16. Chilton F. H., O'Flaherty J. T., Ellis J. M., Swendsen C. L., Wykle R. L. Selective acylation of lyso platelet activating factor by arachidonate in human neutrophils. J Biol Chem. 1983 Jun 25;258(12):7268–7271. [PubMed] [Google Scholar]
  17. Clark J. D., Lin L. L., Kriz R. W., Ramesha C. S., Sultzman L. A., Lin A. Y., Milona N., Knopf J. L. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent translocation domain with homology to PKC and GAP. Cell. 1991 Jun 14;65(6):1043–1051. doi: 10.1016/0092-8674(91)90556-e. [DOI] [PubMed] [Google Scholar]
  18. Cohen P., Cohen P. T. Protein phosphatases come of age. J Biol Chem. 1989 Dec 25;264(36):21435–21438. [PubMed] [Google Scholar]
  19. Conquer J., Mahadevappa V. G. Evidence for the possible involvement of protein kinase C in the activation of non-specific phospholipase A2 in human neutrophils. J Lipid Mediat. 1991 Jan-Feb;3(1):113–123. [PubMed] [Google Scholar]
  20. Duyster J., Schulze-Specking A., Fitzke E., Dieter P. Protein kinase C involved in zymosan-induced release of arachidonic acid and superoxide but not in calcium ionophore-elicited arachidonic acid release or formation of prostaglandin E2 from added arachidonate. J Cell Biochem. 1992 Mar;48(3):288–295. doi: 10.1002/jcb.240480309. [DOI] [PubMed] [Google Scholar]
  21. Franson R., Raghupathi R., Fry M., Saal J., Vishwanath B., Ghosh S. S., Rosenthal M. D. Inhibition of human phospholipases A2 by cis-unsaturated fatty acids and oligomers of prostaglandin B1. Adv Exp Med Biol. 1990;279:219–230. doi: 10.1007/978-1-4613-0651-1_15. [DOI] [PubMed] [Google Scholar]
  22. Gapinski D. M., Mallett B. E., Froelich L. L., Jackson W. T. Benzophenone dicarboxylic acid antagonists of leukotriene B4. 1. Structure-activity relationships of the benzophenone nucleus. J Med Chem. 1990 Oct;33(10):2798–2807. doi: 10.1021/jm00172a019. [DOI] [PubMed] [Google Scholar]
  23. Holtzman M. J. Arachidonic acid metabolism. Implications of biological chemistry for lung function and disease. Am Rev Respir Dis. 1991 Jan;143(1):188–203. doi: 10.1164/ajrccm/143.1.188. [DOI] [PubMed] [Google Scholar]
  24. Hubbard W. C., Litterst C. L., Liu M. C., Bleecker E. R., Eggleston J. C., McLemore T. L., Boyd M. R. Profiling of prostaglandin biosynthesis in biopsy fragments of human lung carcinomas and normal human lung by capillary gas chromatography-negative ion chemical ionization mass spectrometry. Prostaglandins. 1986 Dec;32(6):889–906. doi: 10.1016/0090-6980(86)90097-3. [DOI] [PubMed] [Google Scholar]
  25. Hwang T. C., Guggino S. E., Guggino W. B. Direct modulation of secretory chloride channels by arachidonic and other cis unsaturated fatty acids. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5706–5709. doi: 10.1073/pnas.87.15.5706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Inagaki M., Kawamoto S., Itoh H., Saitoh M., Hagiwara M., Takahashi J., Hidaka H. Naphthalenesulfonamides as calmodulin antagonists and protein kinase inhibitors. Mol Pharmacol. 1986 Jun;29(6):577–581. [PubMed] [Google Scholar]
  27. Irons C. E., Sei C. A., Hidaka H., Glembotski C. C. Protein kinase C and calmodulin kinase are required for endothelin-stimulated atrial natriuretic factor secretion from primary atrial myocytes. J Biol Chem. 1992 Mar 15;267(8):5211–5216. [PubMed] [Google Scholar]
  28. Kase H., Iwahashi K., Nakanishi S., Matsuda Y., Yamada K., Takahashi M., Murakata C., Sato A., Kaneko M. K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. Biochem Biophys Res Commun. 1987 Jan 30;142(2):436–440. doi: 10.1016/0006-291x(87)90293-2. [DOI] [PubMed] [Google Scholar]
  29. Khan W. A., Blobe G. C., Hannun Y. A. Activation of protein kinase C by oleic acid. Determination and analysis of inhibition by detergent micelles and physiologic membranes: requirement for free oleate. J Biol Chem. 1992 Feb 25;267(6):3605–3612. [PubMed] [Google Scholar]
  30. Koide H., Ogita K., Kikkawa U., Nishizuka Y. Isolation and characterization of the epsilon subspecies of protein kinase C from rat brain. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1149–1153. doi: 10.1073/pnas.89.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kusunoki T., Higashi H., Hosoi S., Hata D., Sugie K., Mayumi M., Mikawa H. Tyrosine phosphorylation and its possible role in superoxide production by human neutrophils stimulated with FMLP and IgG. Biochem Biophys Res Commun. 1992 Mar 16;183(2):789–796. doi: 10.1016/0006-291x(92)90552-v. [DOI] [PubMed] [Google Scholar]
  32. Landt M., Easom R. A., Colca J. R., Wolf B. A., Turk J., Mills L. A., McDaniel M. L. Parallel effects of arachidonic acid on insulin secretion, calmodulin-dependent protein kinase activity and protein kinase C activity in pancreatic islets. Cell Calcium. 1992 Mar;13(3):163–172. doi: 10.1016/0143-4160(92)90044-s. [DOI] [PubMed] [Google Scholar]
  33. Laposata M., Reich E. L., Majerus P. W. Arachidonoyl-CoA synthetase. Separation from nonspecific acyl-CoA synthetase and distribution in various cells and tissues. J Biol Chem. 1985 Sep 15;260(20):11016–11020. [PubMed] [Google Scholar]
  34. Lefkowith J. B., Rogers M., Lennartz M. R., Brown E. J. Essential fatty acid deficiency impairs macrophage spreading and adherence. Role of arachidonate in cell adhesion. J Biol Chem. 1991 Jan 15;266(2):1071–1076. [PubMed] [Google Scholar]
  35. Lennartz M. R., Brown E. J. Arachidonic acid is essential for IgG Fc receptor-mediated phagocytosis by human monocytes. J Immunol. 1991 Jul 15;147(2):621–626. [PubMed] [Google Scholar]
  36. MacDonald J. I., Sprecher H. Phospholipid fatty acid remodeling in mammalian cells. Biochim Biophys Acta. 1991 Jul 9;1084(2):105–121. doi: 10.1016/0005-2760(91)90209-z. [DOI] [PubMed] [Google Scholar]
  37. MacEwan D. J., Mitchell R., Thomson F. J., Johnson M. S. Inhibition of depolarisation-induced calcium influx into GH3 cells by arachidonic acid: the involvement of protein kinase C. Biochim Biophys Acta. 1991 Sep 24;1094(3):346–354. doi: 10.1016/0167-4889(91)90096-g. [DOI] [PubMed] [Google Scholar]
  38. McIntyre T. M., Reinhold S. L., Prescott S. M., Zimmerman G. A. Protein kinase C activity appears to be required for the synthesis of platelet-activating factor and leukotriene B4 by human neutrophils. J Biol Chem. 1987 Nov 15;262(32):15370–15376. [PubMed] [Google Scholar]
  39. McPhail L. C., Clayton C. C., Snyderman R. A potential second messenger role for unsaturated fatty acids: activation of Ca2+-dependent protein kinase. Science. 1984 May 11;224(4649):622–625. doi: 10.1126/science.6231726. [DOI] [PubMed] [Google Scholar]
  40. Mueller H. W., O'Flaherty J. T., Wykle R. L. Biosynthesis of platelet activating factor in rabbit polymorphonuclear neutrophils. J Biol Chem. 1983 May 25;258(10):6213–6218. [PubMed] [Google Scholar]
  41. Märki F., Franson R. Endogenous suppression of neutral-active and calcium-dependent phospholipase A2 in human polymorphonuclear leukocytes. Biochim Biophys Acta. 1986 Nov 14;879(2):149–156. doi: 10.1016/0005-2760(86)90097-4. [DOI] [PubMed] [Google Scholar]
  42. Onoda T., Iinuma H., Sasaki Y., Hamada M., Isshiki K., Naganawa H., Takeuchi T., Tatsuta K., Umezawa K. Isolation of a novel tyrosine kinase inhibitor, lavendustin A, from Streptomyces griseolavendus. J Nat Prod. 1989 Nov-Dec;52(6):1252–1257. doi: 10.1021/np50066a009. [DOI] [PubMed] [Google Scholar]
  43. Ramesha C. S., Pickett W. C. Platelet-activating factor and leukotriene biosynthesis is inhibited in polymorphonuclear leukocytes depleted of arachidonic acid. J Biol Chem. 1986 Jun 15;261(17):7592–7595. [PubMed] [Google Scholar]
  44. Randriamampita C., Trautmann A. Arachidonic acid activates Ca2+ extrusion in macrophages. J Biol Chem. 1990 Oct 25;265(30):18059–18062. [PubMed] [Google Scholar]
  45. Saito H., Hirai A., Tamura Y., Yoshida S. The 5-lipoxygenase products can modulate the synthesis of platelet-activating factor (alkyl-acetyl GPC) in Ca-ionophore A23187-stimulated rat peritoneal macrophages. Prostaglandins Leukot Med. 1985 Jun;18(3):271–286. doi: 10.1016/0262-1746(85)90059-9. [DOI] [PubMed] [Google Scholar]
  46. Salmon J. A., Higgs G. A. Prostaglandins and leukotrienes as inflammatory mediators. Br Med Bull. 1987 Apr;43(2):285–296. doi: 10.1093/oxfordjournals.bmb.a072183. [DOI] [PubMed] [Google Scholar]
  47. Sharp J. D., White D. L., Chiou X. G., Goodson T., Gamboa G. C., McClure D., Burgett S., Hoskins J., Skatrud P. L., Sportsman J. R. Molecular cloning and expression of human Ca(2+)-sensitive cytosolic phospholipase A2. J Biol Chem. 1991 Aug 15;266(23):14850–14853. [PubMed] [Google Scholar]
  48. Snyder F., Lee T. C., Blank M. L. The role of transacylases in the metabolism of arachidonate and platelet activating factor. Prog Lipid Res. 1992;31(1):65–86. doi: 10.1016/0163-7827(92)90016-c. [DOI] [PubMed] [Google Scholar]
  49. Sozzani S., Luini W., Molino M., Jílek P., Bottazzi B., Cerletti C., Matsushima K., Mantovani A. The signal transduction pathway involved in the migration induced by a monocyte chemotactic cytokine. J Immunol. 1991 Oct 1;147(7):2215–2221. [PubMed] [Google Scholar]
  50. Suga K., Kawasaki T., Blank M. L., Snyder F. An arachidonoyl (polyenoic)-specific phospholipase A2 activity regulates the synthesis of platelet-activating factor in granulocytic HL-60 cells. J Biol Chem. 1990 Jul 25;265(21):12363–12371. [PubMed] [Google Scholar]
  51. Tamaoki T. Use and specificity of staurosporine, UCN-01, and calphostin C as protein kinase inhibitors. Methods Enzymol. 1991;201:340–347. doi: 10.1016/0076-6879(91)01030-6. [DOI] [PubMed] [Google Scholar]
  52. Tokumitsu H., Chijiwa T., Hagiwara M., Mizutani A., Terasawa M., Hidaka H. KN-62, 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazi ne, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1990 Mar 15;265(8):4315–4320. [PubMed] [Google Scholar]
  53. Triggiani M., Connell T. R., Chilton F. H. Evidence that increasing the cellular content of eicosapentaenoic acid does not reduce the biosynthesis of platelet-activating factor. J Immunol. 1990 Oct 1;145(7):2241–2248. [PubMed] [Google Scholar]
  54. Triggiani M., Schleimer R. P., Warner J. A., Chilton F. H. Differential synthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine and platelet-activating factor by human inflammatory cells. J Immunol. 1991 Jul 15;147(2):660–666. [PubMed] [Google Scholar]
  55. Uemura Y., Lee T. C., Snyder F. A coenzyme A-independent transacylase is linked to the formation of platelet-activating factor (PAF) by generating the lyso-PAF intermediate in the remodeling pathway. J Biol Chem. 1991 May 5;266(13):8268–8272. [PubMed] [Google Scholar]
  56. Venable M. E., Nieto M. L., Schmitt J. D., Wykle R. L. Conversion of 1-O-[3H]alkyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine to lyso platelet-activating factor by the CoA-independent transacylase in membrane fractions of human neutrophils. J Biol Chem. 1991 Oct 5;266(28):18691–18698. [PubMed] [Google Scholar]
  57. Vindlacheruvu R. R., Rink T. J., Sage S. O. Lack of evidence for a role for the lipoxygenase pathway in increases in cytosolic calcium evoked by ADP and arachidonic acid in human platelets. FEBS Lett. 1991 Nov 4;292(1-2):196–200. doi: 10.1016/0014-5793(91)80866-2. [DOI] [PubMed] [Google Scholar]
  58. Waite M. Phospholipases, enzymes that share a substrate class. Adv Exp Med Biol. 1990;279:1–22. doi: 10.1007/978-1-4613-0651-1_1. [DOI] [PubMed] [Google Scholar]
  59. Wheelan P., Clay K. L. Albumin and fatty acid effects on the stimulated production of 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (PAF) by human polymorphonuclear leukocytes. Biochim Biophys Acta. 1992 Aug 19;1127(3):284–292. doi: 10.1016/0005-2760(92)90233-l. [DOI] [PubMed] [Google Scholar]
  60. Winkler J. D., Sung C. M., Bennett C. F., Chilton F. H. Characterization of CoA-independent transacylase activity in U937 cells. Biochim Biophys Acta. 1991 Feb 5;1081(3):339–346. doi: 10.1016/0005-2760(91)90291-o. [DOI] [PubMed] [Google Scholar]
  61. Winkler J. D., Sung C. M., Hubbard W. C., Chilton F. H. Evidence for different mechanisms involved in the formation of lyso platelet-activating factor and the calcium-dependent release of arachidonic acid from human neutrophils. Biochem Pharmacol. 1992 Nov 17;44(10):2055–2066. doi: 10.1016/0006-2952(92)90109-v. [DOI] [PubMed] [Google Scholar]
  62. Wykle R. L., Malone B., Snyder F. Enzymatic synthesis of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine, a hypotensive and platelet-aggregating lipid. J Biol Chem. 1980 Nov 10;255(21):10256–10260. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES