Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 May 1;291(Pt 3):907–914. doi: 10.1042/bj2910907

Inactivation of penicillin acylase from Kluyvera citrophila by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline: a case of time-dependent non-covalent enzyme inhibition.

J Martín 1, J M Mancheño 1, R Arche 1
PMCID: PMC1132455  PMID: 8489517

Abstract

Penicillin acylase (PA) from Kluyvera citrophila was inhibited by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), a specific carboxy-group-reactive reagent. Enzyme activity progressively decreased to a residual value depending on EEDQ concentration. Neither enzymic nor non-enzymic decomposition of EEDQ is concomitant with PA inactivation. Moreover, enzyme re-activation is achieved by chromatographic removal of EEDQ, pH increase or displacement of the reagent with penicillin G. It was then concluded that PA inactivation is due to an equilibrium reaction. The kinetics of enzyme inactivation was analysed by fitting data to theoretical equations derived in accordance with this mechanism. Corrections for re-activation during the enzyme assay were a necessary introduction. The pH-dependence of the rate constant for EEDQ hydrolysis either alone or in the presence of enzyme was studied by u.v. spectroscopy. It turned out to be coincident with the pH-dependence of the forward and reverse rate constants for the inactivation process. It is suggested that previous protonation of the EEDQ molecule is required for these reactions to occur. The thermodynamic values associated with the overall reaction showed little change. Finally it is proposed that the inactivation of PA by EEDQ proceeds through a two-step reaction. The initial and rapid reversible binding is followed by a slow, time-dependent, non-covalent, reversible inactivating step. The expected behaviour in the case of enzyme modification by covalent activation of carboxy residues is also reviewed.

Full text

PDF
907

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balasingham K., Warburton D., Dunnill P., Lilly M. D. The isolation and kinetics of penicillin amidase from Escherichia coli. Biochim Biophys Acta. 1972 Jul 13;276(1):250–256. doi: 10.1016/0005-2744(72)90027-7. [DOI] [PubMed] [Google Scholar]
  2. Barbero J. L., Buesa J. M., González de Buitrago G., Méndez E., Péz-Aranda A., García J. L. Complete nucleotide sequence of the penicillin acylase gene from Kluyvera citrophila. Gene. 1986;49(1):69–80. doi: 10.1016/0378-1119(86)90386-0. [DOI] [PubMed] [Google Scholar]
  3. Belleau B., DiTullio V., Godin D. The mechanism of irreversible adrenergic blockade by N-carbethoxydihydroquinolines--model studies with typical serine hydrolases. Biochem Pharmacol. 1969 May;18(5):1039–1044. doi: 10.1016/0006-2952(69)90107-5. [DOI] [PubMed] [Google Scholar]
  4. Belleau B., Malek G. A new convenient reagent for peptide syntheses. J Am Chem Soc. 1968 Mar 13;90(6):1651–1652. doi: 10.1021/ja01008a045. [DOI] [PubMed] [Google Scholar]
  5. Belleau B., Martel R., Lacasse G., Ménard M., Weinberg N. L., Perron Y. G. N-carboxylic acid esters of 1,2- and 1,4-dihydroquinolines. A new class of irreversible inactivators of the catecholamine alpha receptors and potent central nervous system depressants. J Am Chem Soc. 1968 Jan 31;90(3):823–824. doi: 10.1021/ja01005a067. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Chen S. S., Engel P. C. Horse liver alcohol dehydrogenase. A study of the essential lysine residue. Biochem J. 1975 Sep;149(3):627–635. doi: 10.1042/bj1490627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen S. S., Engel P. C. The equilibrium position of the reaction of bovine liver glutamate dehydrogenase with pyridoxal5'-phosphate. A demonstration that covalent modification with this reagent completely abolishes catalytic activity. Biochem J. 1975 May;147(2):351–358. doi: 10.1042/bj1470351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chothia C. Hydrophobic bonding and accessible surface area in proteins. Nature. 1974 Mar 22;248(446):338–339. doi: 10.1038/248338a0. [DOI] [PubMed] [Google Scholar]
  10. Chothia C. Structural invariants in protein folding. Nature. 1975 Mar 27;254(5498):304–308. doi: 10.1038/254304a0. [DOI] [PubMed] [Google Scholar]
  11. Cole M. Deacylation of acylamino compounds other than penicillins by the cell-bound penicillin acylase of Escherichia coli. Biochem J. 1969 Dec;115(4):741–745. doi: 10.1042/bj1150741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cole M. Factors affecting the synthesis of ampicillin and hydroxypenicillins by the cell-bound penicillin acylase of Escherichia coli. Biochem J. 1969 Dec;115(4):757–764. doi: 10.1042/bj1150757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Daumy G. O., Danley D., McColl A. S. Role of protein subunits in Proteus rettgeri penicillin G acylase. J Bacteriol. 1985 Sep;163(3):1279–1281. doi: 10.1128/jb.163.3.1279-1281.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ellis K. J., Morrison J. F. Buffers of constant ionic strength for studying pH-dependent processes. Methods Enzymol. 1982;87:405–426. doi: 10.1016/s0076-6879(82)87025-0. [DOI] [PubMed] [Google Scholar]
  15. Harb J., Meflah K., di Pietro A., Bernard S., Gautheron D. C. Chemical modification of essential carboxyl group and histidine residue in the plasma-membrane 5'-nucleotidase. Biochim Biophys Acta. 1986 Mar 28;870(2):320–326. doi: 10.1016/0167-4838(86)90236-0. [DOI] [PubMed] [Google Scholar]
  16. Janin J., Chothia C. Role of hydrophobicity in the binding of coenzymes. Appendix. Translational and rotational contribution to the free energy of dissociation. Biochemistry. 1978 Jul 25;17(15):2943–2948. doi: 10.1021/bi00608a001. [DOI] [PubMed] [Google Scholar]
  17. Kinnunen P. M., Spilburg C. A., Lange L. G. Chemical modification of acyl-CoA:cholesterol O-acyltransferase. 2. Identification of a coenzyme A regulatory site by p-mercuribenzoate modification. Biochemistry. 1988 Sep 20;27(19):7351–7356. doi: 10.1021/bi00419a026. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Mahajan P. B. Penicillin acylases. An update. Appl Biochem Biotechnol. 1984 Oct-Dec;9(5-6):537–554. doi: 10.1007/BF02798404. [DOI] [PubMed] [Google Scholar]
  20. Margolin A. L., Svedas V. K., Berezin I. V. Substrate specificity of penicillin amidase from E. coli. Biochim Biophys Acta. 1980 Dec 4;616(2):283–289. doi: 10.1016/0005-2744(80)90145-x. [DOI] [PubMed] [Google Scholar]
  21. Martín J., Prieto I., Barbero J. L., Pérez-Gil J., Mancheño J. M., Arche R. Thermodynamic profiles of penicillin G hydrolysis catalyzed by wild-type and Met----Ala168 mutant penicillin acylases from Kluyvera citrophila. Biochim Biophys Acta. 1990 Feb 9;1037(2):133–139. doi: 10.1016/0167-4838(90)90158-c. [DOI] [PubMed] [Google Scholar]
  22. Morrison J. F., Walsh C. T. The behavior and significance of slow-binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol. 1988;61:201–301. doi: 10.1002/9780470123072.ch5. [DOI] [PubMed] [Google Scholar]
  23. Ogawa H., Fujioka M. The reaction of pyridoxal 5'-phosphate with an essential lysine residue of saccharopine dehydrogenase (L-lysine-forming). J Biol Chem. 1980 Aug 10;255(15):7420–7425. [PubMed] [Google Scholar]
  24. Plaskie A., Roets E., Vanderhaeghe H. Substrate specificity of penicillin acylase of E. coli. J Antibiot (Tokyo) 1978 Aug;31(8):783–788. doi: 10.7164/antibiotics.31.783. [DOI] [PubMed] [Google Scholar]
  25. Pougeois R. EEDQ probably reacts with the Mg2+-ATP catalytic sites of mitochondrial and bacterial F1-ATPases. FEBS Lett. 1983 Apr 5;154(1):47–50. doi: 10.1016/0014-5793(83)80872-2. [DOI] [PubMed] [Google Scholar]
  26. Pougeois R., Satre M., Vignais P. V. N-Ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, a new inhibitor of the mitochondrial F1-ATPase. Biochemistry. 1978 Jul 25;17(15):3018–3023. doi: 10.1021/bi00608a013. [DOI] [PubMed] [Google Scholar]
  27. Pérez-Gil J., Martin J., Acebal C., Arche R. Essential histidine residues in lysolecithin:lysolecithin acetyltransferase from rabbit lung. Arch Biochem Biophys. 1989 Mar;269(2):562–568. doi: 10.1016/0003-9861(89)90141-0. [DOI] [PubMed] [Google Scholar]
  28. RAY W. J., Jr, KOSHLAND D. E., Jr A method for characterizing the type and numbers of groups involved in enzyme action. J Biol Chem. 1961 Jul;236:1973–1979. [PubMed] [Google Scholar]
  29. Rakitzis E. T. Kinetic analysis of protein modification reactions at equilibrium. Biochem J. 1989 Nov 1;263(3):855–859. doi: 10.1042/bj2630855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rakitzis E. T. Kinetic analysis of protein modification reactions at equilibrium. Biochem J. 1989 Nov 1;263(3):855–859. doi: 10.1042/bj2630855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schumacher G., Sizmann D., Haug H., Buckel P., Böck A. Penicillin acylase from E. coli: unique gene-protein relation. Nucleic Acids Res. 1986 Jul 25;14(14):5713–5727. doi: 10.1093/nar/14.14.5713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Siewiński M., Kuropatwa M., Szewczuk A. Phenylalkylsulfonyl derivatives as covalent inhibitors of penicillin amidase. Hoppe Seylers Z Physiol Chem. 1984 Aug;365(8):829–837. doi: 10.1515/bchm2.1984.365.2.829. [DOI] [PubMed] [Google Scholar]
  33. Waley S. G. Kinetics of suicide substrates. Practical procedures for determining parameters. Biochem J. 1985 May 1;227(3):843–849. doi: 10.1042/bj2270843. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES