Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 May 1;291(Pt 3):921–926. doi: 10.1042/bj2910921

The interaction of phospholipid bilayers with pig heart AMP deaminase: Fourier-transform infrared spectroscopic and kinetic studies.

F Tanfani 1, E Kossowska 1, J Purzycka-Preis 1, M M Zydowo 1, M Wozniak 1, E Tartaglini 1, E Bertoli 1
PMCID: PMC1132457  PMID: 8489518

Abstract

The interaction of pig heart AMP deaminase with different chemical species of phosphatidylcholine and with natural plasma membranes has been investigated. Phospholipids added to the system either as natural biological membranes (plasma membrane vesicles) or in the form of liposomes containing unsaturated phosphatidylcholine considerably enhanced AMP deaminase activity. The secondary structure of pig heart AMP deaminase in the absence and in the presence of dioleoyl phosphatidylcholine and dipalmitoyl phosphatidylcholine liposomes was investigated by Fourier-transform infrared spectroscopy. Quantitative analysis of the amide I band showed that the enzyme contains 45% beta-sheets, 28% alpha-helix, 16% turns and 11% non-ordered structure. In the presence of dioleoyl phosphatidylcholine liposomes, the beta/alpha content ratio decreased; this decrease was dependent on the amount of lipid added. This phenomenon was not observed in the case of dipalmitoyl phosphatidylcholine liposomes. These data suggest a possible role for membrane phospholipids in the regulation of AMP deaminase activity.

Full text

PDF
921

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blume A., Hübner W., Messner G. Fourier transform infrared spectroscopy of 13C = O-labeled phospholipids hydrogen bonding to carbonyl groups. Biochemistry. 1988 Oct 18;27(21):8239–8249. doi: 10.1021/bi00421a038. [DOI] [PubMed] [Google Scholar]
  2. Burger R., Lowenstein J. M. Adenylate deaminase. 3. Regulation of deamination pathways in extracts of rat heart and lung. J Biol Chem. 1967 Nov 25;242(22):5281–5288. [PubMed] [Google Scholar]
  3. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
  4. CHANEY A. L., MARBACH E. P. Modified reagents for determination of urea and ammonia. Clin Chem. 1962 Apr;8:130–132. [PubMed] [Google Scholar]
  5. Chapman A. G., Atkinson D. E. Stabilization of adenylate energy charge by the adenylate deaminase reaction. J Biol Chem. 1973 Dec 10;248(23):8309–8312. [PubMed] [Google Scholar]
  6. Chirgadze Y. N., Fedorov O. V., Trushina N. P. Estimation of amino acid residue side-chain absorption in the infrared spectra of protein solutions in heavy water. Biopolymers. 1975 Apr;14(4):679–694. doi: 10.1002/bip.1975.360140402. [DOI] [PubMed] [Google Scholar]
  7. Dhalla N. S., Anand-Srivastava M. B., Tuana B. S., Khandelwal R. L. Solubilization of a calcium dependent adenosine triphosphatase from rat heart sarcolemma. J Mol Cell Cardiol. 1981 Apr;13(4):413–423. doi: 10.1016/0022-2828(81)90283-2. [DOI] [PubMed] [Google Scholar]
  8. Haris P. I., Coke M., Chapman D. Fourier transform infrared spectroscopic investigation of rhodopsin structure and its comparison with bacteriorhodopsin. Biochim Biophys Acta. 1989 Apr 6;995(2):160–167. doi: 10.1016/0167-4838(89)90075-7. [DOI] [PubMed] [Google Scholar]
  9. Haris P. I., Lee D. C., Chapman D. A Fourier transform infrared investigation of the structural differences between ribonuclease A and ribonuclease S. Biochim Biophys Acta. 1986 Dec 12;874(3):255–265. doi: 10.1016/0167-4838(86)90024-5. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Leung H. B., Schramm V. L. The role of adenosine monophosphate nucleosidase in the regulation of adenine nucleotide levels in Azotobacter vinelandii during aerobic-anaerobic transitions. Arch Biochem Biophys. 1978 Sep;190(1):46–56. doi: 10.1016/0003-9861(78)90252-7. [DOI] [PubMed] [Google Scholar]
  12. Merkler D. J., Wali A. S., Taylor J., Schramm V. L. AMP deaminase from yeast. Role in AMP degradation, large scale purification, and properties of the native and proteolyzed enzyme. J Biol Chem. 1989 Dec 15;264(35):21422–21430. [PubMed] [Google Scholar]
  13. Meyer S. L., Kvalnes-Krick K. L., Schramm V. L. Characterization of AMD, the AMP deaminase gene in yeast. Production of amd strain, cloning, nucleotide sequence, and properties of the protein. Biochemistry. 1989 Oct 31;28(22):8734–8743. doi: 10.1021/bi00448a009. [DOI] [PubMed] [Google Scholar]
  14. Newby A. C. The pigeon heart 5'-nucleotidase responsible for ischaemia-induced adenosine formation. Biochem J. 1988 Jul 1;253(1):123–130. doi: 10.1042/bj2530123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Prus E., Zydowo M. The effect of phospholipid bilayers on AMP-deaminase from rat tissues. Int J Biochem. 1983;15(9):1169–1173. doi: 10.1016/0020-711x(83)90233-1. [DOI] [PubMed] [Google Scholar]
  16. Purzycka-Preis J., Prus E., Woźniak M., Zydowo M. Modification by liposomes of the adenosine triphosphate-activating effect on adenylate deaminase from pig heart. Biochem J. 1978 Nov 1;175(2):607–612. doi: 10.1042/bj1750607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smiley K. L., Jr, Berry A. J., Suelter C. H. An improved purification, crystallization, and some properties of rabbit muscle 5'-adenylic acid deaminase. J Biol Chem. 1967 May 25;242(10):2502–2506. [PubMed] [Google Scholar]
  18. TURNER D. H., TURNER J. F. Adenylic deaminase of pea seeds. Biochem J. 1961 Apr;79:143–147. doi: 10.1042/bj0790143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Woźniak M., Kossowska E., Purzycka-Preis J., Zydowo M. M. The influence of phosphatidate bilayers on pig heart AMP deaminase. Crucial role of pH-dependent lipid-phase transition. Biochem J. 1988 Nov 1;255(3):977–981. doi: 10.1042/bj2550977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Woźniak M., Purzycka-Preis J., Kossowska E., Zydowo M. M. Diversity of the effect of phosphatidylcholine and sphingomyelin on adenylate deaminase from pig brain. Acta Biochim Pol. 1987;34(3):285–290. [PubMed] [Google Scholar]
  21. Yoshino M., Murakami K. In situ studies on AMP deaminase as a control system of the adenylate energy charge in yeasts. Biochim Biophys Acta. 1981 Jan 7;672(1):16–20. doi: 10.1016/0304-4165(81)90274-9. [DOI] [PubMed] [Google Scholar]
  22. Yoshino M., Murakami K. In situ studies on AMP deaminase as a control system of the adenylate energy charge in yeasts. Biochim Biophys Acta. 1981 Jan 7;672(1):16–20. doi: 10.1016/0304-4165(81)90274-9. [DOI] [PubMed] [Google Scholar]
  23. Zoref-Shani E., Kessler-Icekson G., Sperling O. Pathways of adenine nucleotide catabolism in primary rat cardiomyocyte cultures. J Mol Cell Cardiol. 1988 Jan;20(1):23–33. doi: 10.1016/s0022-2828(88)80176-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES