Abstract
The metabolism of propionate was examined in wild-type Escherichia coli and cells lacking citrate synthase by high-resolution 13C n.m.r. Spectra of cell extracts from wild-type E. coli show that glutamate becomes highly enriched in 13C when 13C-enriched propionate is the sole carbon source. No glutamate labelling was detected when the tricarboxylic acid cycle was blocked either by deletion of citrate synthase or by inhibition of succinate dehydrogenase by malonate. The 13C fractional enrichment in glutamate C-2, C-3 and C-4 in wild-type cells was quantitatively and qualitatively different when [2-13C]propionate as opposed to [3-13C]propionate was supplied. Approximately equal labelling occurred in the C-2, C-3 and C-4 positions of glutamate when [3-13C]propionate was available, and multiplets due to carbon-carbon spin-spin coupling were observed. However, in cells supplied with [2-13C]propionate, very little 13C appeared in the glutamate C-4 position, and the remaining glutamate resonances all appeared as singlets. The unequal and non-identical labelling of glutamate in cells supplied with [2-13C]- as opposed to [3-13C]propionate is consistent with the utilization of propionate by E. coli via two pathways, oxidation of propionate to pyruvate and carboxylation of propionate to succinate. These intermediates are further metabolized to glutamate by the action of the tricarboxylic acid cycle. The existence of an organized tricarboxylic acid cycle is discussed as a consequence of the ability to block utilization of propionate in tricarboxylic acid-cycle-defective E. coli.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARNSTEIN H. R., WHITE A. M. The function of vitamin B12 in the metabolism of propionate by the protozoan Ochromonas malhamensis. Biochem J. 1962 May;83:264–270. doi: 10.1042/bj0830264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chance E. M., Seeholzer S. H., Kobayashi K., Williamson J. R. Mathematical analysis of isotope labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts. J Biol Chem. 1983 Nov 25;258(22):13785–13794. [PubMed] [Google Scholar]
- DEHERTOGH A. A., MAYEUX P. A., EVANS H. J. THE RELATIONSHIP OF COBALT REQUIREMENT TO PROPIONATE METABOLISM IN RHIZOBIUM. J Biol Chem. 1964 Aug;239:2446–2453. [PubMed] [Google Scholar]
- Dickinson J. R., Dawes I. W., Boyd A. S., Baxter R. L. 13C NMR studies of acetate metabolism during sporulation of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5847–5851. doi: 10.1073/pnas.80.19.5847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FLAVIN M., ORTIZ P. J., OCHOA S. Metabolism of propionic acid in animal tissues. Nature. 1955 Oct 29;176(4487):823–826. doi: 10.1038/176823a0. [DOI] [PubMed] [Google Scholar]
- Kay W. W. Genetic control of the metabolism of propionate by Escherichia coli K12. Biochim Biophys Acta. 1972 May 16;264(3):508–521. doi: 10.1016/0304-4165(72)90014-1. [DOI] [PubMed] [Google Scholar]
- Kornberg H. L. The role and control of the glyoxylate cycle in Escherichia coli. Biochem J. 1966 Apr;99(1):1–11. doi: 10.1042/bj0990001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malloy C. R., Sherry A. D., Jeffrey F. M. Analysis of tricarboxylic acid cycle of the heart using 13C isotope isomers. Am J Physiol. 1990 Sep;259(3 Pt 2):H987–H995. doi: 10.1152/ajpheart.1990.259.3.H987. [DOI] [PubMed] [Google Scholar]
- Malloy C. R., Sherry A. D., Jeffrey F. M. Evaluation of carbon flux and substrate selection through alternate pathways involving the citric acid cycle of the heart by 13C NMR spectroscopy. J Biol Chem. 1988 May 25;263(15):6964–6971. [PubMed] [Google Scholar]
- Robinson J. B., Jr, Srere P. A. Organization of Krebs tricarboxylic acid cycle enzymes in mitochondria. J Biol Chem. 1985 Sep 5;260(19):10800–10805. [PubMed] [Google Scholar]
- Sumegi B., Sherry A. D., Malloy C. R. Channeling of TCA cycle intermediates in cultured Saccharomyces cerevisiae. Biochemistry. 1990 Oct 2;29(39):9106–9110. doi: 10.1021/bi00491a002. [DOI] [PubMed] [Google Scholar]
- Sümegi B., Alkonyi I. A study on the physical interaction between the pyruvate dehydrogenase complex and citrate synthase. Biochim Biophys Acta. 1983 Dec 12;749(2):163–171. doi: 10.1016/0167-4838(83)90248-0. [DOI] [PubMed] [Google Scholar]
- Tompa P., Batke J., Ovadi J., Welch G. R., Srere P. A. Quantitation of the interaction between citrate synthase and malate dehydrogenase. J Biol Chem. 1987 May 5;262(13):6089–6092. [PubMed] [Google Scholar]
- Ugurbil K., Brown T. R., den Hollander J. A., Glynn P., Shulman R. G. High-resolution 13C nuclear magnetic resonance studies of glucose metabolism in Escherichia coli. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3742–3746. doi: 10.1073/pnas.75.8.3742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOOD H. G., STJERNHOLM R. Transcarboxylase. II. Purification and properties of methylmalonyl-oxaloacetic transcarboxylase. Proc Natl Acad Sci U S A. 1961 Mar 15;47:289–303. doi: 10.1073/pnas.47.3.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker T. E., Han C. H., Kollman V. H., London R. E., Matwiyoff N. A. 13C nuclear magnetic resonance studies of the biosynthesis by Microbacterium ammoniaphilum of L-glutamate selectively enriched with carbon-13. J Biol Chem. 1982 Feb 10;257(3):1189–1195. [PubMed] [Google Scholar]
- Walsh K., Koshland D. E., Jr Determination of flux through the branch point of two metabolic cycles. The tricarboxylic acid cycle and the glyoxylate shunt. J Biol Chem. 1984 Aug 10;259(15):9646–9654. [PubMed] [Google Scholar]
- Wegener W. S., Reeves H. C., Ajl S. J. Propionate metabolism. II. Factors regulating adaptation of Escherichia coli to propionate. Arch Biochem Biophys. 1968 Jan;123(1):55–61. doi: 10.1016/0003-9861(68)90102-1. [DOI] [PubMed] [Google Scholar]
- Wegener W. S., Reeves H. C., Ajl S. J. Propionate oxidation in Escherichia coli. Arch Biochem Biophys. 1967 Aug;121(2):440–442. doi: 10.1016/0003-9861(67)90098-7. [DOI] [PubMed] [Google Scholar]
- Wegener W. S., Reeves H. C., Rabin R., Ajl S. J. Alternate pathways of metabolism of short-chain fatty acids. Bacteriol Rev. 1968 Mar;32(1):1–26. doi: 10.1128/br.32.1.1-26.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- den Hollander J. A., Behar K. L., Shulman R. G. 13C NMR study of transamination during acetate utilization by Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1981 May;78(5):2693–2697. doi: 10.1073/pnas.78.5.2693. [DOI] [PMC free article] [PubMed] [Google Scholar]
