Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Apr 1;291(Pt 1):219–223. doi: 10.1042/bj2910219

delta-Aminolaevulinate synthase expression in muscle after contractions and recovery.

M Takahashi 1, D T McCurdy 1, D A Essig 1, D A Hood 1
PMCID: PMC1132505  PMID: 8385933

Abstract

The synthesis of haem has been postulated to be a key regulatory step in muscle mitochondrial biogenesis. We examined the expression of delta-aminolaevulinate synthase (ALAs), the regulatory enzyme of haem metabolism, in 10 Hz electrically stimulated and non-stimulated control rat tibialis anterior (TA) muscle. ALAs activity and mRNA levels were measured at 0, 18 and 48 h of recovery after 3 h of acute stimulation, or after 7 days of stimulation (3 h/day). ALAs activity in control muscles averaged 7.8 +/- 0.8 nmol/h per g (n = 30). After 3 h of stimulation and during recovery, no change in ALAs activity occurred. ALAs mRNA during the same time was unchanged except at 48 h of recovery, when it increased 1.3-fold above control (P < 0.05). After 7 days of stimulation, ALAs activity was unchanged at 0 h, but increased at 18 and 48 h of recovery to 2.0- and 1.8-fold above control (P < 0.05). ALAs mRNA was also increased, but to a level averaging 1.6-fold above control (P < 0.05) at all times, indicating an increased mRNA stability or synthesis. No change in the haem-containing enzyme cytochrome c oxidase (CYTOX) activity occurred after 3 h of stimulation in the red section of the TA. After 7 days of stimulation, the increase in CYTOX activity averaged 1.7-fold above control (P < 0.05) at all times. Thus the induction of ALAs during recovery after 7 days was regulated by factors which not only change ALAs mRNA content, but which also affect ALAs mRNA at translational or post-translational steps. This induction occurred despite a 1.7-fold increase in CYTOX, implying that a precursor-product relationship does not always exist.

Full text

PDF
219

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham W. M., Terjung R. L. Increased delta-aminolevulinic acid synthetase activity in rat ventricle after acute exercise. J Appl Physiol Respir Environ Exerc Physiol. 1978 Apr;44(4):507–511. doi: 10.1152/jappl.1978.44.4.507. [DOI] [PubMed] [Google Scholar]
  2. Armstrong R. B., Phelps R. O. Muscle fiber type composition of the rat hindlimb. Am J Anat. 1984 Nov;171(3):259–272. doi: 10.1002/aja.1001710303. [DOI] [PubMed] [Google Scholar]
  3. Beattie D. S. The possible relationship between heme synthesis and mitochondrial biogenesis. Arch Biochem Biophys. 1971 Nov;147(1):136–142. doi: 10.1016/0003-9861(71)90319-5. [DOI] [PubMed] [Google Scholar]
  4. Booth F. W., Holloszy J. O. Cytochrome c turnover in rat skeletal muscles. J Biol Chem. 1977 Jan 25;252(2):416–419. [PubMed] [Google Scholar]
  5. Booth F. W., Nicholson W. F., Watson P. A. Influence of muscle use on protein synthesis and degradation. Exerc Sport Sci Rev. 1982;10:27–48. [PubMed] [Google Scholar]
  6. Briggs D. W., Condie L. W., Sedman R. M., Tephly T. R. Delta-Aminolevulinic acid synthetase in the heart. J Biol Chem. 1976 Aug 25;251(16):4996–5001. [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Erickson J. M., Rushford C. L., Dorney D. J., Wilson G. N., Schmickel R. D. Structure and variation of human ribosomal DNA: molecular analysis of cloned fragments. Gene. 1981 Dec;16(1-3):1–9. doi: 10.1016/0378-1119(81)90055-x. [DOI] [PubMed] [Google Scholar]
  9. Essig D. A., Kennedy J. M., McNabney L. A. Regulation of 5'-aminolevulinate synthase activity in overloaded skeletal muscle. Am J Physiol. 1990 Aug;259(2 Pt 1):C310–C314. doi: 10.1152/ajpcell.1990.259.2.C310. [DOI] [PubMed] [Google Scholar]
  10. Essig D. A., McNabney L. A. Muscle-specific regulation of the heme biosynthetic enzyme 5'-aminolevulinate synthase. Am J Physiol. 1991 Oct;261(4 Pt 1):C691–C698. doi: 10.1152/ajpcell.1991.261.4.C691. [DOI] [PubMed] [Google Scholar]
  11. GRANICK S., URATA G. Increase in activity of alpha-aminolevulinic acid synthetase in liver mitochondria induced by feeding of 3,5-dicarbethoxy-1,4-dihydrocollidine. J Biol Chem. 1963 Feb;238:821–827. [PubMed] [Google Scholar]
  12. Holloszy J. O., Winder W. W. Induction of delta-aminolevulinic acid synthetase in muscle by exercise or thyroxine. Am J Physiol. 1979 Mar;236(3):R180–R183. doi: 10.1152/ajpregu.1979.236.3.R180. [DOI] [PubMed] [Google Scholar]
  13. Hood D. A. Co-ordinate expression of cytochrome c oxidase subunit III and VIc mRNAs in rat tissues. Biochem J. 1990 Jul 15;269(2):503–506. doi: 10.1042/bj2690503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hood D. A., Gorski J., Terjung R. L. Oxygen cost of twitch and tetanic isometric contractions of rat skeletal muscle. Am J Physiol. 1986 Apr;250(4 Pt 1):E449–E456. doi: 10.1152/ajpendo.1986.250.4.E449. [DOI] [PubMed] [Google Scholar]
  15. Hood D. A., Parent G. Metabolic and contractile responses of rat fast-twitch muscle to 10-Hz stimulation. Am J Physiol. 1991 Apr;260(4 Pt 1):C832–C840. doi: 10.1152/ajpcell.1991.260.4.C832. [DOI] [PubMed] [Google Scholar]
  16. Hood D. A., Zak R., Pette D. Chronic stimulation of rat skeletal muscle induces coordinate increases in mitochondrial and nuclear mRNAs of cytochrome-c-oxidase subunits. Eur J Biochem. 1989 Feb 1;179(2):275–280. doi: 10.1111/j.1432-1033.1989.tb14551.x. [DOI] [PubMed] [Google Scholar]
  17. Lomax M. I., Coucouvanis E., Schon E. A., Barald K. F. Differential expression of nuclear genes for cytochrome c oxidase during myogenesis. Muscle Nerve. 1990 Apr;13(4):330–337. doi: 10.1002/mus.880130409. [DOI] [PubMed] [Google Scholar]
  18. May B. K., Borthwick I. A., Srivastava G., Pirola B. A., Elliott W. H. Control of 5-aminolevulinate synthase in animals. Curr Top Cell Regul. 1986;28:233–262. doi: 10.1016/b978-0-12-152828-7.50008-1. [DOI] [PubMed] [Google Scholar]
  19. Poyton R. O., Trueblood C. E., Wright R. M., Farrell L. E. Expression and function of cytochrome c oxidase subunit isologues. Modulators of cellular energy production? Ann N Y Acad Sci. 1988;550:289–307. doi: 10.1111/j.1749-6632.1988.tb35344.x. [DOI] [PubMed] [Google Scholar]
  20. Saltzgaber-Müller J., Schatz G. Heme is necessary for the accumulation and assembly of cytochrome c oxidase subunits in Saccharomyces cerevisiae. J Biol Chem. 1978 Jan 10;253(1):305–310. [PubMed] [Google Scholar]
  21. Srivastava G., Borthwick I. A., Maguire D. J., Elferink C. J., Bawden M. J., Mercer J. F., May B. K. Regulation of 5-aminolevulinate synthase mRNA in different rat tissues. J Biol Chem. 1988 Apr 15;263(11):5202–5209. [PubMed] [Google Scholar]
  22. Takahashi M., Hood D. A. Chronic stimulation-induced changes in mitochondria and performance in rat skeletal muscle. J Appl Physiol (1985) 1993 Feb;74(2):934–941. doi: 10.1152/jappl.1993.74.2.934. [DOI] [PubMed] [Google Scholar]
  23. Wickner W. T., Lodish H. F. Multiple mechanisms of protein insertion into and across membranes. Science. 1985 Oct 25;230(4724):400–407. doi: 10.1126/science.4048938. [DOI] [PubMed] [Google Scholar]
  24. Yamamoto M., Kure S., Engel J. D., Hiraga K. Structure, turnover, and heme-mediated suppression of the level of mRNA encoding rat liver delta-aminolevulinate synthase. J Biol Chem. 1988 Nov 5;263(31):15973–15979. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES