Abstract
Regulated secretory proteins are thought to be sorted in the trans-Golgi network (TGN) via selective aggregation. To elucidate the biogenesis of the secretory granule in the exocrine pancreas, we reconstituted in vitro the conditions of pH and ions believed to exist in the TGN using the end product of this sorting process, the zymogen granule contents. Protein aggregation was dependent on pH (acidic) and on the presence of cations (10 mM Ca2+, 150 mM K+) to reproduce the pattern of proteins found in the granule. The constitutive secretory protein IgG was excluded from these aggregates. Zymogen aggregation correlated with the relative proportion of the major granule membrane protein GP-2 in the assay. These results show that the glycosylphosphatidylinositol-anchored protein GP-2 co-aggregates with zymogens in the acidic environment believed to exist in the pancreatic TGN, and thus suggest that GP-2 would function as a membrane anchor for zymogen aggregates, facilitating their entrapment in budding vesicles directed towards the regulated secretory pathway.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. G., Orci L. A view of acidic intracellular compartments. J Cell Biol. 1988 Mar;106(3):539–543. doi: 10.1083/jcb.106.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arvan P., Rudnick G., Castle J. D. Osmotic properties and internal pH of isolated rat parotid secretory granules. J Biol Chem. 1984 Nov 10;259(21):13567–13572. [PubMed] [Google Scholar]
- Bendayan M. Concentration of amylase along its secretory pathway in the pancreatic acinar cell as revealed by high resolution immunocytochemistry. Histochem J. 1984 Jan;16(1):85–108. doi: 10.1007/BF01003438. [DOI] [PubMed] [Google Scholar]
- Burgess T. L., Craik C. S., Kelly R. B. The exocrine protein trypsinogen is targeted into the secretory granules of an endocrine cell line: studies by gene transfer. J Cell Biol. 1985 Aug;101(2):639–645. doi: 10.1083/jcb.101.2.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgess T. L., Kelly R. B. Constitutive and regulated secretion of proteins. Annu Rev Cell Biol. 1987;3:243–293. doi: 10.1146/annurev.cb.03.110187.001331. [DOI] [PubMed] [Google Scholar]
- Chanat E., Huttner W. B. Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol. 1991 Dec;115(6):1505–1519. doi: 10.1083/jcb.115.6.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chung K. N., Walter P., Aponte G. W., Moore H. P. Molecular sorting in the secretory pathway. Science. 1989 Jan 13;243(4888):192–197. doi: 10.1126/science.2911732. [DOI] [PubMed] [Google Scholar]
- De Lisle R. C., Williams J. A. Zymogen granule acidity is not required for stimulated pancreatic protein secretion. Am J Physiol. 1987 Dec;253(6 Pt 1):G711–G719. doi: 10.1152/ajpgi.1987.253.6.G711. [DOI] [PubMed] [Google Scholar]
- Fukuoka S., Freedman S. D., Yu H., Sukhatme V. P., Scheele G. A. GP-2/THP gene family encodes self-binding glycosylphosphatidylinositol-anchored proteins in apical secretory compartments of pancreas and kidney. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1189–1193. doi: 10.1073/pnas.89.4.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gasser K. W., DiDomenico J., Hopfer U. Potassium transport by pancreatic and parotid zymogen granule membranes. Am J Physiol. 1988 Dec;255(6 Pt 1):C705–C711. doi: 10.1152/ajpcell.1988.255.6.C705. [DOI] [PubMed] [Google Scholar]
- Gerdes H. H., Rosa P., Phillips E., Baeuerle P. A., Frank R., Argos P., Huttner W. B. The primary structure of human secretogranin II, a widespread tyrosine-sulfated secretory granule protein that exhibits low pH- and calcium-induced aggregation. J Biol Chem. 1989 Jul 15;264(20):12009–12015. [PubMed] [Google Scholar]
- Geuze H. J., Slot J. W., van der Ley P. A., Scheffer R. C. Use of colloidal gold particles in double-labeling immunoelectron microscopy of ultrathin frozen tissue sections. J Cell Biol. 1981 Jun;89(3):653–665. doi: 10.1083/jcb.89.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths G., Simons K. The trans Golgi network: sorting at the exit site of the Golgi complex. Science. 1986 Oct 24;234(4775):438–443. doi: 10.1126/science.2945253. [DOI] [PubMed] [Google Scholar]
- Havinga J. R., Slot J. W., Strous G. J. Membrane detachment and release of the major membrane glycoprotein of secretory granules in rat pancreatic exocrine cells. Eur J Cell Biol. 1985 Nov;39(1):70–76. [PubMed] [Google Scholar]
- Izutsu K. T., Goddard M. K., Iversen J. M., Robinovitch M. R., Oswald T. K., Cantino M., Johnson D. Maturation-related changes in mass and elemental contents of secretory granules as measured by electron-microprobe. Cell Tissue Res. 1991 Mar;263(3):535–540. doi: 10.1007/BF00327286. [DOI] [PubMed] [Google Scholar]
- Jacob M., Lainé J., LeBel D. Specific interactions of pancreatic amylase at acidic pH. Amylase and the major protein of the zymogen granule membrane (GP-2) bind to immobilized or polymerized amylase. Biochem Cell Biol. 1992 Oct-Nov;70(10-11):1105–1114. doi: 10.1139/o92-156. [DOI] [PubMed] [Google Scholar]
- Koenig H. The soluble acidic lipoproteins (SALPS) of storage granules. Matrix constituents which may bind stored molecules. Adv Cytopharmacol. 1974;2:273–301. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- LeBel D., Beattie M. The integral and peripheral proteins of the zymogen granule membrane. Biochim Biophys Acta. 1984 Feb 15;769(3):611–621. doi: 10.1016/0005-2736(84)90060-9. [DOI] [PubMed] [Google Scholar]
- LeBel D., Beattie M. The major protein of pancreatic zymogen granule membranes (GP-2) is anchored via covalent bonds to phosphatidylinositol. Biochem Biophys Res Commun. 1988 Jul 29;154(2):818–823. doi: 10.1016/0006-291x(88)90213-6. [DOI] [PubMed] [Google Scholar]
- LeBel D., Beaudoin A. R. Different patterns of proteins are secreted by the pig pancreas when stimulated by secretin alone or in combination with caerulein. Biochim Biophys Acta. 1985 Oct 30;847(1):132–135. doi: 10.1016/0167-4889(85)90164-8. [DOI] [PubMed] [Google Scholar]
- Lebel D., Grondin G., Paquette J. In vitro stability of pancreatic zymogen granules: roles of pH and calcium. Biol Cell. 1988;63(3):343–353. [PubMed] [Google Scholar]
- Leblond F. A., Talbot B. G., Lauzon I., LeBel D. A competition enzyme-linked immunosorbent assay (ELISA) for the measurement of pancreatic GP-2 glycoprotein. J Immunol Methods. 1989 Nov 13;124(1):71–75. doi: 10.1016/0022-1759(89)90187-7. [DOI] [PubMed] [Google Scholar]
- MacDonald R. J., Ronzio R. A. Comparative analysis of zymogen granule membrane polypeptides. Biochem Biophys Res Commun. 1972 Oct 17;49(2):377–382. doi: 10.1016/0006-291x(72)90421-4. [DOI] [PubMed] [Google Scholar]
- Mellman I., Fuchs R., Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700. doi: 10.1146/annurev.bi.55.070186.003311. [DOI] [PubMed] [Google Scholar]
- Niederau C., Van Dyke R. W., Scharschmidt B. F., Grendell J. H. Rat pancreatic zymogen granules. An actively acidified compartment. Gastroenterology. 1986 Dec;91(6):1433–1442. doi: 10.1016/0016-5085(86)90197-6. [DOI] [PubMed] [Google Scholar]
- Orci L., Ravazzola M., Anderson R. G. The condensing vacuole of exocrine cells is more acidic than the mature secretory vesicle. Nature. 1987 Mar 5;326(6108):77–79. doi: 10.1038/326077a0. [DOI] [PubMed] [Google Scholar]
- Paquette J., Leblond F. A., Beattie M., LeBel D. Reducing conditions induce a total degradation of the major zymogen granule membrane protein in both its membranous and its soluble form. Immunochemical quantitation of the two forms. Biochem Cell Biol. 1986 May;64(5):456–462. doi: 10.1139/o86-064. [DOI] [PubMed] [Google Scholar]
- Paul E., Leblond F. A., LeBel D. In resting conditions, the pancreatic granule membrane protein GP-2 is secreted by cleavage of its glycosylphosphatidylinositol anchor. Biochem J. 1991 Aug 1;277(Pt 3):879–881. doi: 10.1042/bj2770879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfeffer S. R., Rothman J. E. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu Rev Biochem. 1987;56:829–852. doi: 10.1146/annurev.bi.56.070187.004145. [DOI] [PubMed] [Google Scholar]
- Posthuma G., Slot J. W., Veenendaal T., Geuze H. J. Immunogold determination of amylase concentrations in pancreatic subcellular compartments. Eur J Cell Biol. 1988 Jun;46(2):327–335. [PubMed] [Google Scholar]
- Pâquet M. R., St-Jean P., Roberge M., Beaudoin A. R. Isolation of zymogen granules from rat pancreas and characterization of their membrane proteins. Eur J Cell Biol. 1982 Aug;28(1):20–26. [PubMed] [Google Scholar]
- Reddy M. K., Heda G. D., Reddy J. K. Purification and characterization of alpha-amylase from rat pancreatic acinar carcinoma. Comparison with pancreatic alpha-amylase. Biochem J. 1987 Mar 15;242(3):681–687. doi: 10.1042/bj2420681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rindler M. J., Hoops T. C. The pancreatic membrane protein GP-2 localizes specifically to secretory granules and is shed into the pancreatic juice as a protein aggregate. Eur J Cell Biol. 1990 Oct;53(1):154–163. [PubMed] [Google Scholar]
- Roos N. A possible site of calcium regulation in rat exocrine pancreas cells: an X-ray microanalytical study. Scanning Microsc. 1988 Mar;2(1):323–329. [PubMed] [Google Scholar]
- Rosa P., Weiss U., Pepperkok R., Ansorge W., Niehrs C., Stelzer E. H., Huttner W. B. An antibody against secretogranin I (chromogranin B) is packaged into secretory granules. J Cell Biol. 1989 Jul;109(1):17–34. doi: 10.1083/jcb.109.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothman S. S., Iskander N., Attwood D., Vladimirsky Y., McQuaid K., Grendell J., Kirz J., Ade H., McNulty I., Kern D. The interior of a whole and unmodified biological object--the zymogen granule--viewed with a high-resolution X-ray microscope. Biochim Biophys Acta. 1989 Jun 27;991(3):484–486. doi: 10.1016/0304-4165(89)90077-9. [DOI] [PubMed] [Google Scholar]
- Rothman S. S. The behavior of isolated zymogen granules: pH-dependent release and reassociation of protein. Biochim Biophys Acta. 1971 Aug 13;241(2):567–577. doi: 10.1016/0005-2736(71)90055-1. [DOI] [PubMed] [Google Scholar]
- Sanders T. G., Rutter W. J. Molecular properties of rat pancreatic and parotid -amylase. Biochemistry. 1972 Jan 4;11(1):130–136. doi: 10.1021/bi00751a022. [DOI] [PubMed] [Google Scholar]
- Scheele G. A. Two-dimensional gel analysis of soluble proteins. Charaterization of guinea pig exocrine pancreatic proteins. J Biol Chem. 1975 Jul 25;250(14):5375–5385. [PubMed] [Google Scholar]
- Scheffer R. C., Poort C., Slot J. W. Fate of the major zymogen granule membrane-associated glycoproteins from rat pancreas. A biochemical and immunocytochemical study. Eur J Cell Biol. 1980 Dec;23(1):122–128. [PubMed] [Google Scholar]
- Tooze J., Kern H. F., Fuller S. D., Howell K. E. Condensation-sorting events in the rough endoplasmic reticulum of exocrine pancreatic cells. J Cell Biol. 1989 Jul;109(1):35–50. doi: 10.1083/jcb.109.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tooze J., Tooze S. A. Clathrin-coated vesicular transport of secretory proteins during the formation of ACTH-containing secretory granules in AtT20 cells. J Cell Biol. 1986 Sep;103(3):839–850. doi: 10.1083/jcb.103.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tooze J., Tooze S. A., Fuller S. D. Sorting of progeny coronavirus from condensed secretory proteins at the exit from the trans-Golgi network of AtT20 cells. J Cell Biol. 1987 Sep;105(3):1215–1226. doi: 10.1083/jcb.105.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong J. G., Izutsu K. T., Robinovitch M. R., Iversen J. M., Cantino M. E., Johnson D. E. Microprobe analysis of maturation-related elemental changes in rat parotid secretory granules. Am J Physiol. 1991 Dec;261(6 Pt 1):C1033–C1041. doi: 10.1152/ajpcell.1991.261.6.C1033. [DOI] [PubMed] [Google Scholar]