Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Apr 1;291(Pt 1):297–301. doi: 10.1042/bj2910297

Active transport of L-proline in the protozoan parasite Trypanosoma brucei brucei.

C L'Hostis 1, M Geindre 1, J Deshusses 1
PMCID: PMC1132516  PMID: 8471048

Abstract

The characteristics of L-proline transport in the procyclic form of Trypanosoma brucei were studied by using L-[14C]proline and a quick separation technique by centrifugation through an oil mixture. L-Proline uptake displayed typical Michaelis-Menten kinetics, with a Km of 19 microM and a maximum transport velocity of 17 nmol/min per 10(8) cells at 27 degrees C. The maximum concentration gradient factor obtained after 1 min of incubation was 270-fold in 0.02 mM proline. Cells permeabilized with 80 microM digitonin were still able to accumulate 14C label, but to a lower extent. The temperature-dependence of proline uptake gave an apparent activation energy of 74.9 kJ.mol-1. In competition studies with a 10-fold excess of structural analogues, L-alanine, L-cysteine and L-azetidine-2-carboxylate were found to inhibit L-proline uptake. Variation of pH or addition of the protonophore carbonyl cyanide m-chlorophenylhydrazone ('CCCP') did not affect proline transport, showing that it is not driven by a protonmotive force. The absence of Na+, with or without monensin, did not affect proline transport. The absence of K+ and the addition of the Na+,K(+)-ATPase inhibitor ouabain had no significant effect on proline uptake activity. The thiol-modifying reagent iodoacetate (10 mM) decreased proline uptake by half. KCN (1 mM) inhibited proline uptake to a lesser extent, and the degree of inhibition was proportional to the intracellular ATP concentration. Preliminary experiments on proline transport in plasma-membrane vesicles of the cells, using a filtration technique, showed an uptake of proline (0.67 nmol/mg of protein) by the vesicles, but only in the presence of intravesicular ATP. The results thus obtained suggest that the proline carrier system in T. brucei is ATP-driven and independent of Na+, K+ or H+ co-transport.

Full text

PDF
297

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltz T., Baltz D., Giroud C., Crockett J. Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J. 1985 May;4(5):1273–1277. doi: 10.1002/j.1460-2075.1985.tb03772.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blum J. J. Effect of osmolality on 86Rb+ uptake and release by Leishmania donovani. J Cell Physiol. 1992 Jul;152(1):111–117. doi: 10.1002/jcp.1041520115. [DOI] [PubMed] [Google Scholar]
  3. Bonay P., Cohen B. E. Neutral amino acid transport in Leishmania promastigotes. Biochim Biophys Acta. 1983 Jun 10;731(2):222–228. doi: 10.1016/0005-2736(83)90012-3. [DOI] [PubMed] [Google Scholar]
  4. Brun R., Schönenberger Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Trop. 1979 Sep;36(3):289–292. [PubMed] [Google Scholar]
  5. Christensen H. N. Organic ion transport during seven decades. The amino acids. Biochim Biophys Acta. 1984 Sep 3;779(3):255–269. doi: 10.1016/0304-4157(84)90012-1. [DOI] [PubMed] [Google Scholar]
  6. Evans D. A., Brown R. C. The utilization of glucose and proline by culture forms of Trypanosoma brucei. J Protozool. 1972 Nov;19(4):686–690. doi: 10.1111/j.1550-7408.1972.tb03561.x. [DOI] [PubMed] [Google Scholar]
  7. Glaser T. A., Mukkada A. J. Proline transport in Leishmania donovani amastigotes: dependence on pH gradients and membrane potential. Mol Biochem Parasitol. 1992 Mar;51(1):1–8. doi: 10.1016/0166-6851(92)90194-o. [DOI] [PubMed] [Google Scholar]
  8. Goldgerg S. S., Pereira A. A., Chiari E., Mares-Guia M., Gazzinelli G. Comparative kinetics of arginine and lysine transport by epimastigotes and trypomastigotes from two strains of Trypanosoma cruzi. J Protozool. 1976 Feb;23(1):179–186. doi: 10.1111/j.1550-7408.1976.tb05267.x. [DOI] [PubMed] [Google Scholar]
  9. Hansen B. D. Trypanosoma gambiense: membrane transport of amino acids. Exp Parasitol. 1979 Oct;48(2):296–304. doi: 10.1016/0014-4894(79)90112-7. [DOI] [PubMed] [Google Scholar]
  10. JOHNSON A. B., STRECKER H. J. The interconversion of glutamic acid and proline. IV. The oxidation of proline by rat liver mitochondria. J Biol Chem. 1962 Jun;237:1876–1882. [PubMed] [Google Scholar]
  11. Kiaira J. K., Njogu R. M. Comparison of glycolysis in intact and digitonin-permeabilized bloodstream trypomastigotes of Trypanosoma brucei. Int J Biochem. 1983;15(11):1379–1383. doi: 10.1016/0020-711x(83)90030-7. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Nakanishi T., Turner R. J., Burg M. B. Osmoregulatory changes in myo-inositol transport by renal cells. Proc Natl Acad Sci U S A. 1989 Aug;86(15):6002–6006. doi: 10.1073/pnas.86.15.6002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nicklin P. L., Irwin W. J., Hassan I. F., Mackay M. Proline uptake by monolayers of human intestinal absorptive (Caco-2) cells in vitro. Biochim Biophys Acta. 1992 Mar 2;1104(2):283–292. doi: 10.1016/0005-2736(92)90042-k. [DOI] [PubMed] [Google Scholar]
  15. Rovis L., Baekkeskov S. Sub-cellular fractionation of Trypanosoma brucei. Isolation and characterization of plasma membranes. Parasitology. 1980 Jun;80(3):507–524. doi: 10.1017/s0031182000000974. [DOI] [PubMed] [Google Scholar]
  16. Ruff M. D., Read C. P. Specificity of amino acid transport in Trypanosoma equiperdum. J Protozool. 1974 May;21(2):368–373. doi: 10.1111/j.1550-7408.1974.tb03672.x. [DOI] [PubMed] [Google Scholar]
  17. Southworth G. C., Read C. P. Absorption of some amino acids by the haemoflagellate, Trypanosoma gambiense. Comp Biochem Physiol A Comp Physiol. 1972 Apr 1;41(4):905–911. doi: 10.1016/0300-9629(72)90354-4. [DOI] [PubMed] [Google Scholar]
  18. Zilberstein D., Dwyer D. M. Protonmotive force-driven active transport of D-glucose and L-proline in the protozoan parasite Leishmania donovani. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1716–1720. doi: 10.1073/pnas.82.6.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zingales B., Carniol C., Abramhamsohn P. A., Colli W. Purification of an adenylyl cyclase-containing plasma membrane fraction from Trypanosoma cruzi. Biochim Biophys Acta. 1979 Jan 19;550(2):233–244. doi: 10.1016/0005-2736(79)90210-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES