Abstract
The stereospecificity of rolipram inhibition of particulate cyclic AMP-specific phosphodiesterase (PDE IV) from guinea-pig eosinophils has been investigated. (-)-Rolipram (IC50 = 0.22 +/- 0.08 microM) was 2.5-fold more potent than (+)-rolipram (IC50 = 0.58 +/- 0.05 microM) in inhibiting membrane-bound PDE IV. Solubilization of PDE IV with deoxycholate (0.5%) and NaCl (100 mM) increased rolipram stereospecificity [IC50 (-)-rolipram = 0.020 +/- 0.002 microM; IC50 (+)-rolipram = 0.33 +/- 0.07 microM]. Partial purification of this solubilized PDE IV by DEAE-trisacryl anion-exchange chromatography reduced the enantiomeric potency difference compared with the pre-chromatographed activity, with (-)-rolipram (IC50 = 0.20 +/- 0.02 microM) being only 2.9-fold more potent than (+)-rolipram (IC50 = 0.57 +/- 0.14 microM). Vanadate-glutathione complex (V-GSH) stimulated membrane-bound PDE IV activity and increased the potency of (-)-rolipram (IC50 = 0.014 +/- 0.006 microM) but not (+)-rolipram (IC50 = 0.32 +/- 0.07 microM). In intact eosinophils, (-)-rolipram (EC50 = 0.19 +/- 0.02 microM) was 10-fold more potent than (+)-rolipram (EC50 = 1.87 +/- 0.09 microM) in enhancing isoprenaline (10 microM)-stimulated cyclic AMP accumulation. Strong correlations were demonstrated for displacement of [3H]rolipram binding to brain membranes by several PDE inhibitors and their inhibition of solubilized PDE IV (r = 0.98, P < 0.001, n = 7) and stimulation of cyclic AMP accumulation in intact cells (r = 0.98, P < 0.001, n = 6). Rolipram was a relatively weak inhibitor of partially purified pig aortic PDE IV and only slight stereospecificity was exhibited [IC50 (-)-rolipram = 1.47 +/- 0.09 microM; IC50 (+)-rolipram = 2.73 +/- 0.38 microM]. The results indicate the presence of a partially concealed stereospecific site (Sr) on eosinophil PDE IV possibly similar to the high-affinity rolipram-binding site in brain through which rolipram can potently inhibit enzyme activity. This site, which apparently is not present on partially purified pig aortic PDE IV, is concealed in freshly prepared eosinophil membranes but is exposed by solubilization or V-GSH treatment and is important in regulating intracellular cyclic AMP accumulation in intact cells.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beavo J. A., Reifsnyder D. H. Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci. 1990 Apr;11(4):150–155. doi: 10.1016/0165-6147(90)90066-H. [DOI] [PubMed] [Google Scholar]
- Harris A. L., Connell M. J., Ferguson E. W., Wallace A. M., Gordon R. J., Pagani E. D., Silver P. J. Role of low Km cyclic AMP phosphodiesterase inhibition in tracheal relaxation and bronchodilation in the guinea pig. J Pharmacol Exp Ther. 1989 Oct;251(1):199–206. [PubMed] [Google Scholar]
- Kaulen P., Brüning G., Schneider H. H., Sarter M., Baumgarten H. G. Autoradiographic mapping of a selective cyclic adenosine monophosphate phosphodiesterase in rat brain with the antidepressant [3H]rolipram. Brain Res. 1989 Dec 4;503(2):229–245. doi: 10.1016/0006-8993(89)91669-7. [DOI] [PubMed] [Google Scholar]
- Krause W., Kühne G., Sauerbrey N. Pharmacokinetics of (+)-rolipram and (-)-rolipram in healthy volunteers. Eur J Clin Pharmacol. 1990;38(1):71–75. doi: 10.1007/BF00314807. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lindgren S., Rascón A., Andersson K. E., Manganiello V., Degerman E. Selective inhibition of cGMP-inhibited and cGMP-noninhibited cyclic nucleotide phosphodiesterases and relaxation of rat aorta. Biochem Pharmacol. 1991 Jul 15;42(3):545–552. doi: 10.1016/0006-2952(91)90317-x. [DOI] [PubMed] [Google Scholar]
- Livi G. P., Kmetz P., McHale M. M., Cieslinski L. B., Sathe G. M., Taylor D. P., Davis R. L., Torphy T. J., Balcarek J. M. Cloning and expression of cDNA for a human low-Km, rolipram-sensitive cyclic AMP phosphodiesterase. Mol Cell Biol. 1990 Jun;10(6):2678–2686. doi: 10.1128/mcb.10.6.2678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reeves M. L., Leigh B. K., England P. J. The identification of a new cyclic nucleotide phosphodiesterase activity in human and guinea-pig cardiac ventricle. Implications for the mechanism of action of selective phosphodiesterase inhibitors. Biochem J. 1987 Jan 15;241(2):535–541. doi: 10.1042/bj2410535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmiechen R., Schneider H. H., Wachtel H. Close correlation between behavioural response and binding in vivo for inhibitors of the rolipram-sensitive phosphodiesterase. Psychopharmacology (Berl) 1990;102(1):17–20. doi: 10.1007/BF02245738. [DOI] [PubMed] [Google Scholar]
- Schneider H. H. Brain cAMP response to phosphodiesterase inhibitors in rats killed by microwave irradiation or decapitation. Biochem Pharmacol. 1984 May 15;33(10):1690–1693. doi: 10.1016/0006-2952(84)90295-8. [DOI] [PubMed] [Google Scholar]
- Schneider H. H., Schmiechen R., Brezinski M., Seidler J. Stereospecific binding of the antidepressant rolipram to brain protein structures. Eur J Pharmacol. 1986 Aug 7;127(1-2):105–115. doi: 10.1016/0014-2999(86)90210-4. [DOI] [PubMed] [Google Scholar]
- Schultz J. E., Folkers G. Unusual stereospecificity of the potential antidepressant rolipram on the cyclic AMP generating system from rat brain cortex. Pharmacopsychiatry. 1988 Mar;21(2):83–86. doi: 10.1055/s-2007-1014653. [DOI] [PubMed] [Google Scholar]
- Schultz J. E., Schmidt B. H. Rolipram, a stereospecific inhibitor of calmodulin-independent phosphodiesterase, causes beta-adrenoceptor subsensitivity in rat cerebral cortex. Naunyn Schmiedebergs Arch Pharmacol. 1986 May;333(1):23–30. doi: 10.1007/BF00569655. [DOI] [PubMed] [Google Scholar]
- Souness J. E., Carter C. M., Diocee B. K., Hassall G. A., Wood L. J., Turner N. C. Characterization of guinea-pig eosinophil phosphodiesterase activity. Assessment of its involvement in regulating superoxide generation. Biochem Pharmacol. 1991 Jul 25;42(4):937–945. doi: 10.1016/0006-2952(91)90056-b. [DOI] [PubMed] [Google Scholar]
- Souness J. E., Maslen C., Scott L. C. Effects of solubilization and vanadate/glutathione complex on inhibitor potencies against eosinophil cyclic AMP-specific phosphodiesterase. FEBS Lett. 1992 May 11;302(2):181–184. doi: 10.1016/0014-5793(92)80435-j. [DOI] [PubMed] [Google Scholar]
- Souness J. E., Thompson W. J., Strada S. J. Adipocyte cyclic nucleotide phosphodiesterase activation by vanadate. J Cyclic Nucleotide Protein Phosphor Res. 1985;10(4):383–396. [PubMed] [Google Scholar]
- Thompson W. J. Cyclic nucleotide phosphodiesterases: pharmacology, biochemistry and function. Pharmacol Ther. 1991;51(1):13–33. doi: 10.1016/0163-7258(91)90039-o. [DOI] [PubMed] [Google Scholar]
- Thompson W. J., Terasaki W. L., Epstein P. M., Strada S. J. Assay of cyclic nucleotide phosphodiesterase and resolution of multiple molecular forms of the enzyme. Adv Cyclic Nucleotide Res. 1979;10:69–92. [PubMed] [Google Scholar]
- Torphy T. J., Cieslinski L. B. Characterization and selective inhibition of cyclic nucleotide phosphodiesterase isozymes in canine tracheal smooth muscle. Mol Pharmacol. 1990 Feb;37(2):206–214. [PubMed] [Google Scholar]
- Torphy T. J., Stadel J. M., Burman M., Cieslinski L. B., McLaughlin M. M., White J. R., Livi G. P. Coexpression of human cAMP-specific phosphodiesterase activity and high affinity rolipram binding in yeast. J Biol Chem. 1992 Jan 25;267(3):1798–1804. [PubMed] [Google Scholar]
- Torphy T. J., Undem B. J. Phosphodiesterase inhibitors: new opportunities for the treatment of asthma. Thorax. 1991 Jul;46(7):512–523. doi: 10.1136/thx.46.7.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wachtel H. Potential antidepressant activity of rolipram and other selective cyclic adenosine 3',5'-monophosphate phosphodiesterase inhibitors. Neuropharmacology. 1983 Mar;22(3):267–272. doi: 10.1016/0028-3908(83)90239-3. [DOI] [PubMed] [Google Scholar]