Abstract
Besides their well-known regulation of transcription by binding to nuclear receptors, thyroid hormones have been suggested to have direct effects on mitochondria. In a previous study, incubation of rat heart mitochondria with 125I-labelled N-bromoacetyl-3,3',5-tri-iodo-L-thyronine (BrAcT3), a thyroid hormone derivative with an alkylating side chain, resulted in the selective labelling of a protein doublet around M(r) 45,000 on SDS/polyacrylamide gels [Rasmussen, Köhrle, Rokos and Hesch (1989) FEBS Lett. 255, 385-390]. Now, this protein doublet has been identified as mitochondrial creatine kinase (Mi-CK). Immunoblotting experiments with the cytoplasmic and mitochondrial fractions of rat heart, brain and liver, as well as inactivation studies with the purified chicken CK isoenzymes have further demonstrated that all four CK isoenzymes (Mia-, Mib-, M- and B-CK) are indeed selectively labelled by BrAcT3. However, in contrast with their bromoalkyl derivatives, thyroid hormones themselves did not compete for CK labelling, suggesting that not the thyroid hormone moiety but rather the bromoacetyl-driven alkylation of the highly reactive 'essential' thiol group of CK accounts for this selective labelling. Therefore the assumption that CK isoenzymes are thyroid-hormone-binding proteins has to be dismissed. Instead, bromoacetyl-based reagents may allow a very specific covalent modification and inactivation of CK isoenzymes in vitro and in vivo.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alderson R., Pastan I., Cheng S. Characterization of the 3,3',5-triiodo-L-thyronine-binding site on plasma membranes from human placenta. Endocrinology. 1985 Jun;116(6):2621–2630. doi: 10.1210/endo-116-6-2621. [DOI] [PubMed] [Google Scholar]
- Biermans W., Bakker A., Jacob W. Contact site between inner and outer mitochondrial membrane: a dynamic microcompartment for creatine kinase activity. Biochim Biophys Acta. 1990 Jul 25;1018(2-3):225–228. doi: 10.1016/0005-2728(90)90254-2. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brand M. D., Murphy M. P. Control of electron flux through the respiratory chain in mitochondria and cells. Biol Rev Camb Philos Soc. 1987 May;62(2):141–193. doi: 10.1111/j.1469-185x.1987.tb01265.x. [DOI] [PubMed] [Google Scholar]
- Cahnmann H. J., Gonçalves E., Ito Y., Fales H. M., Sokoloski E. A. Synthesis and properties of N-bromoacetyl-L-thyroxine. Anal Biochem. 1992 Aug 1;204(2):344–350. doi: 10.1016/0003-2697(92)90250-b. [DOI] [PubMed] [Google Scholar]
- Cheneval D., Müller M., Carafoli E. The mitochondrial phosphate carrier reconstituted in liposomes is inhibited by doxorubicin. FEBS Lett. 1983 Aug 8;159(1-2):123–126. doi: 10.1016/0014-5793(83)80429-3. [DOI] [PubMed] [Google Scholar]
- Cheng S. Y. Structural similarities in the plasma membrane 3,3',5-triiodo-L-thyronine receptors from human, rat and mouse cultured cells. Analysis by affinity labeling. Endocrinology. 1983 Sep;113(3):1155–1157. doi: 10.1210/endo-113-3-1155. [DOI] [PubMed] [Google Scholar]
- David-Inouye Y., Somack R., Nordeen S. K., Apriletti J. W., Baxter J. D., Eberhardt N. L. Photoaffinity labelling of the rat liver nuclear thyroid hormone receptor with [125I]triiodothyronine. Endocrinology. 1982 Nov;111(5):1758–1760. doi: 10.1210/endo-111-5-1758. [DOI] [PubMed] [Google Scholar]
- Dawson D. M., Eppenberger H. M., Kaplan N. O. The comparative enzymology of creatine kinases. II. Physical and chemical properties. J Biol Chem. 1967 Jan 25;242(2):210–217. [PubMed] [Google Scholar]
- Dozin B., Cahnmann H. J., Nikodem V. M. Comparative characterization of thyroid hormone receptors and binding proteins in rat liver nucleus, plasma membrane, and cytosol by photoaffinity labeling with L-thyroxine. Biochemistry. 1985 Sep 10;24(19):5203–5208. doi: 10.1021/bi00340a037. [DOI] [PubMed] [Google Scholar]
- Ferreira M. M., Bismuth J., Torresani J. Reversible dissociation of triiodothyronine-nuclear receptor complexes by mercurial and chaotropic reagents. Biochem Biophys Res Commun. 1982 Mar 15;105(1):244–251. doi: 10.1016/s0006-291x(82)80037-5. [DOI] [PubMed] [Google Scholar]
- Goglia F., Liverini G., Lanni A., Barletta A. Mitochondrial DNA, RNA and protein synthesis in normal, hypothyroid and mildly hyperthyroid rat liver during cold exposure. Mol Cell Endocrinol. 1988 Feb;55(2-3):141–147. doi: 10.1016/0303-7207(88)90128-1. [DOI] [PubMed] [Google Scholar]
- Goglia F., Torresani J., Bugli P., Barletta A., Liverini G. In vitro binding of triiodothyronine to rat liver mitochondria. Pflugers Arch. 1981 May;390(2):120–124. doi: 10.1007/BF00590193. [DOI] [PubMed] [Google Scholar]
- Gonçalves E., Lakshmanan M., Cahnmann H. J., Robbins J. High-affinity binding of thyroid hormones to neuroblastoma plasma membranes. Biochim Biophys Acta. 1990 Nov 12;1055(2):151–156. doi: 10.1016/0167-4889(90)90115-t. [DOI] [PubMed] [Google Scholar]
- Haas R. C., Strauss A. W. Separate nuclear genes encode sarcomere-specific and ubiquitous human mitochondrial creatine kinase isoenzymes. J Biol Chem. 1990 Apr 25;265(12):6921–6927. [PubMed] [Google Scholar]
- Hafner R. P., Brand M. D. Hypothyroidism in rats does not lower mitochondrial ADP/O and H+/O ratios. Biochem J. 1988 Mar 1;250(2):477–484. doi: 10.1042/bj2500477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hashizume K., Ichikawa K. Localization of 3,5,3'-L-triiodothyronine receptor in rat kidney mitochondrial membranes. Biochem Biophys Res Commun. 1982 Jun 15;106(3):920–926. doi: 10.1016/0006-291x(82)91798-3. [DOI] [PubMed] [Google Scholar]
- Hasumura S., Kitagawa S., Lovelace E., Willingham M. C., Pastan I., Cheng S. Characterization of a membrane-associated 3,3',5-triiodo-L-thyronine binding protein by use of monoclonal antibodies. Biochemistry. 1986 Dec 2;25(24):7881–7888. doi: 10.1021/bi00372a014. [DOI] [PubMed] [Google Scholar]
- Haugland R. P. Conformational flexibility and structure of creatine kinase. J Supramol Struct. 1975;3(2):192–199. doi: 10.1002/jss.400030213. [DOI] [PubMed] [Google Scholar]
- Higuti T., Rottenberg H. Triiodothyronine rapidly stimulates mitochondrial respiration in isolated hepatocytes. Chem Pharm Bull (Tokyo) 1986 Oct;34(10):4331–4334. doi: 10.1248/cpb.34.4331. [DOI] [PubMed] [Google Scholar]
- Hoch F. L. Cardiolipins and biomembrane function. Biochim Biophys Acta. 1992 Mar 26;1113(1):71–133. doi: 10.1016/0304-4157(92)90035-9. [DOI] [PubMed] [Google Scholar]
- Horiuchi R., Johnson M. L., Willingham M. C., Pastan I., Cheng S. Affinity labeling of the plasma membrane 3,3',5-triiodo-L-thyronine receptor in GH3 cells. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5527–5531. doi: 10.1073/pnas.79.18.5527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horst C., Rokos H., Seitz H. J. Rapid stimulation of hepatic oxygen consumption by 3,5-di-iodo-L-thyronine. Biochem J. 1989 Aug 1;261(3):945–950. doi: 10.1042/bj2610945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hossle J. P., Schlegel J., Wegmann G., Wyss M., Böhlen P., Eppenberger H. M., Wallimann T., Perriard J. C. Distinct tissue specific mitochondrial creatine kinases from chicken brain and striated muscle with a conserved CK framework. Biochem Biophys Res Commun. 1988 Feb 29;151(1):408–416. doi: 10.1016/0006-291x(88)90608-0. [DOI] [PubMed] [Google Scholar]
- Höppner W., Horst C., Rasmussen U. B., Seitz H. J. Adenine nucleotide translocase--a target of thyroid hormone action? Horm Metab Res Suppl. 1987;17:29–33. [PubMed] [Google Scholar]
- Ichikawa K., Hashizume K., Kobayashi M., Yamada T. Evidence for induction by thyroid hormone of cytosolic proteins which control mitochondrial protein synthesis. Endocrinology. 1985 Nov;117(5):1749–1758. doi: 10.1210/endo-117-5-1749. [DOI] [PubMed] [Google Scholar]
- Jacobus W. E. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase. Annu Rev Physiol. 1985;47:707–725. doi: 10.1146/annurev.ph.47.030185.003423. [DOI] [PubMed] [Google Scholar]
- Jakovcic S., Swift H. H., Gross N. J., Rabinowitz M. Biochemical and stereological analysis of rat liver mitochondria in different thyroid states. J Cell Biol. 1978 Jun;77(3):887–901. doi: 10.1083/jcb.77.3.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James P., Wyss M., Lutsenko S., Wallimann T., Carafoli E. ATP binding site of mitochondrial creatine kinase. Affinity labelling of Asp-335 with C1RATP. FEBS Lett. 1990 Oct 29;273(1-2):139–143. doi: 10.1016/0014-5793(90)81069-z. [DOI] [PubMed] [Google Scholar]
- Kanemitsu F., Kawanishi I., Mizushima J. Characteristics of mitochondrial creatine kinases from normal human heart and liver tissues. Clin Chim Acta. 1982 Mar 12;119(3):307–317. doi: 10.1016/0009-8981(82)90344-8. [DOI] [PubMed] [Google Scholar]
- Koehrle J., Auf'mkolk M., Rokos H., Hesch R. D., Cody V. Rat liver iodothyronine monodeiodinase. Evaluation of the iodothyronine ligand-binding site. J Biol Chem. 1986 Sep 5;261(25):11613–11622. [PubMed] [Google Scholar]
- Kupriyanov V. V., Ya Steinschneider A., Ruuge E. K., Kapel'ko V. I., Yu Zueva M., Lakomkin V. L., Smirnov V. N., Saks V. A. Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. 31P-NMR studies. Biochim Biophys Acta. 1984 Dec 11;805(4):319–331. doi: 10.1016/0167-4889(84)90014-4. [DOI] [PubMed] [Google Scholar]
- Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods. 1984 Dec;10(3-4):203–209. doi: 10.1016/0165-022x(84)90040-x. [DOI] [PubMed] [Google Scholar]
- Köhrle J., Rasmussen U. B., Ekenbarger D. M., Alex S., Rokos H., Hesch R. D., Leonard J. L. Affinity labeling of rat liver and kidney type I 5'-deiodinase. Identification of the 27-kDa substrate binding subunit. J Biol Chem. 1990 Apr 15;265(11):6155–6163. [PubMed] [Google Scholar]
- Köhrle J., Rasmussen U. B., Rokos H., Leonard J. L., Hesch R. D. Selective affinity labeling of a 27-kDa integral membrane protein in rat liver and kidney with N-bromoacetyl derivatives of L-thyroxine and 3,5,3'-triiodo-L-thyronine. J Biol Chem. 1990 Apr 15;265(11):6146–6154. [PubMed] [Google Scholar]
- Milner-White E. J., Kelly I. D. Creatine kinase. Modification of the working enzyme. Biochem J. 1976 Jul 1;157(1):23–31. doi: 10.1042/bj1570023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson B. D., Joste V., Wielburski A., Rosenqvist U. The effects of tri-iodothyronine on the synthesis of mitochondrial proteins in isolated rat hepatocytes. Biochim Biophys Acta. 1980 Jul 29;608(2):422–426. doi: 10.1016/0005-2787(80)90187-2. [DOI] [PubMed] [Google Scholar]
- Nelson B. D. Thyroid hormone regulation of mitochondrial function. Comments on the mechanism of signal transduction. Biochim Biophys Acta. 1990 Jul 25;1018(2-3):275–277. doi: 10.1016/0005-2728(90)90266-7. [DOI] [PubMed] [Google Scholar]
- Oppenheimer J. H., Schwartz H. L., Mariash C. N., Kinlaw W. B., Wong N. C., Freake H. C. Advances in our understanding of thyroid hormone action at the cellular level. Endocr Rev. 1987 Aug;8(3):288–308. doi: 10.1210/edrv-8-3-288. [DOI] [PubMed] [Google Scholar]
- Palacios-Romero R., Mowbray J. Evidence for the rapid direct control both in vivo and in vitro of the efficiency of oxidative phosphorylation by 3,5,3'-tri-iodo-L-thyronine in rats. Biochem J. 1979 Dec 15;184(3):527–538. doi: 10.1042/bj1840527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pascual A., Casanova J., Samuels H. H. Photoaffinity labeling of thyroid hormone nuclear receptors in intact cells. J Biol Chem. 1982 Aug 25;257(16):9640–9647. [PubMed] [Google Scholar]
- Payne R. M., Haas R. C., Strauss A. W. Structural characterization and tissue-specific expression of the mRNAs encoding isoenzymes from two rat mitochondrial creatine kinase genes. Biochim Biophys Acta. 1991 Jul 23;1089(3):352–361. doi: 10.1016/0167-4781(91)90176-m. [DOI] [PubMed] [Google Scholar]
- Quest A. F., Eppenberger H. M., Wallimann T. Purification of brain-type creatine kinase (B-CK) from several tissues of the chicken: B-CK subspecies. Enzyme. 1989;41(1):33–42. doi: 10.1159/000469048. [DOI] [PubMed] [Google Scholar]
- Rao M. L., Rao G. S. A specific L-tri-iodothyronine-binding protein in the cytosol fraction of human breast adipose tissue. Biochem J. 1982 Jul 15;206(1):19–25. doi: 10.1042/bj2060019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasmussen U. B., Köhrle J., Rokos H., Hesch R. D. Thyroid hormone effect on rat heart mitochondrial proteins and affinity labeling with N-bromoacetyl-3,3',5-triiodo-L-thyronine. Lack of direct effect on the adenine nucleotide translocase. FEBS Lett. 1989 Sep 25;255(2):385–390. doi: 10.1016/0014-5793(89)81128-7. [DOI] [PubMed] [Google Scholar]
- Rasmussen U. B., Wohlrab H. Bovine cardiac mitochondrial ADP/ATP-carrier: two distinct mRNAs and an unusually short 3'-noncoding sequence. Biochem Biophys Res Commun. 1986 Jul 31;138(2):850–857. doi: 10.1016/s0006-291x(86)80574-5. [DOI] [PubMed] [Google Scholar]
- Sanders J. L., Joung J. I., Rochman H. The further heterogeneity of creatine kinase. Presence of isoenzymes of cathodic mobility in rat tissues. Biochim Biophys Acta. 1976 Jul 8;438(2):407–411. doi: 10.1016/0005-2744(76)90257-6. [DOI] [PubMed] [Google Scholar]
- Schlegel J., Wyss M., Eppenberger H. M., Wallimann T. Functional studies with the octameric and dimeric form of mitochondrial creatine kinase. Differential pH-dependent association of the two oligomeric forms with the inner mitochondrial membrane. J Biol Chem. 1990 Jun 5;265(16):9221–9227. [PubMed] [Google Scholar]
- Schlegel J., Wyss M., Schürch U., Schnyder T., Quest A., Wegmann G., Eppenberger H. M., Wallimann T. Mitochondrial creatine kinase from cardiac muscle and brain are two distinct isoenzymes but both form octameric molecules. J Biol Chem. 1988 Nov 15;263(32):16963–16969. [PubMed] [Google Scholar]
- Schlegel J., Zurbriggen B., Wegmann G., Wyss M., Eppenberger H. M., Wallimann T. Native mitochondrial creatine kinase forms octameric structures. I. Isolation of two interconvertible mitochondrial creatine kinase forms, dimeric and octameric mitochondrial creatine kinase: characterization, localization, and structure-function relationships. J Biol Chem. 1988 Nov 15;263(32):16942–16953. [PubMed] [Google Scholar]
- Schoenmakers C. H., Pigmans I. G., Hawkins H. C., Freedman R. B., Visser T. J. Rat liver type I iodothyronine deiodinase is not identical to protein disulfide isomerase. Biochem Biophys Res Commun. 1989 Jul 31;162(2):857–868. doi: 10.1016/0006-291x(89)92389-9. [DOI] [PubMed] [Google Scholar]
- Segal J. In vivo effect of 3,5,3'-triiodothyronine on calcium uptake in several tissues in the rat: evidence for a physiological role for calcium as the first messenger for the prompt action of thyroid hormone at the level of the plasma membrane. Endocrinology. 1990 Jul;127(1):17–24. doi: 10.1210/endo-127-1-17. [DOI] [PubMed] [Google Scholar]
- Seitz H. J., Müller M. J., Soboll S. Rapid thyroid-hormone effect on mitochondrial and cytosolic ATP/ADP ratios in the intact liver cell. Biochem J. 1985 Apr 1;227(1):149–153. doi: 10.1042/bj2270149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siegel J. S., Korcek L., Tabachnick M. Evaluation of N-bromoacetyl-L-thyroxine as an affinity label for the thyroxine (T4)-binding site in human T4-binding globulin. Endocrinology. 1983 Dec;113(6):2173–2180. doi: 10.1210/endo-113-6-2173. [DOI] [PubMed] [Google Scholar]
- Siegrist-Kaiser C. A., Juge-Aubry C., Tranter M. P., Ekenbarger D. M., Leonard J. L. Thyroxine-dependent modulation of actin polymerization in cultured astrocytes. A novel, extranuclear action of thyroid hormone. J Biol Chem. 1990 Mar 25;265(9):5296–5302. [PubMed] [Google Scholar]
- Sterling K., Campbell G. A., Brenner M. A. Purification of the mitochondrial triiodothyronine (T3) receptor from rat liver. Acta Endocrinol (Copenh) 1984 Mar;105(3):391–397. doi: 10.1530/acta.0.1050391. [DOI] [PubMed] [Google Scholar]
- Sterling K. Direct thyroid hormone activation of mitochondria: the role of adenine nucleotide translocase. Endocrinology. 1986 Jul;119(1):292–295. doi: 10.1210/endo-119-1-292. [DOI] [PubMed] [Google Scholar]
- Sterling K. Direct triiodothyronine (T3) action by a primary mitochondrial pathway. Endocr Res. 1989;15(4):683–715. doi: 10.3109/07435808909036357. [DOI] [PubMed] [Google Scholar]
- Sterling K., Milch P. O., Brenner M. A., Lazarus J. H. Thyroid hormone action: the mitochondrial pathway. Science. 1977 Sep 2;197(4307):996–999. doi: 10.1126/science.196334. [DOI] [PubMed] [Google Scholar]
- Vandest P., Labbe J. P., Kassab R. Photoaffinity labelling of arginine kinase and creatine kinase with a gamma-P-substituted arylazido analogue of ATP. Eur J Biochem. 1980 Mar;104(2):433–442. doi: 10.1111/j.1432-1033.1980.tb04445.x. [DOI] [PubMed] [Google Scholar]
- Verhoeven A. J., Kamer P., Groen A. K., Tager J. M. Effects of thyroid hormone on mitochondrial oxidative phosphorylation. Biochem J. 1985 Feb 15;226(1):183–192. doi: 10.1042/bj2260183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallimann T., Wyss M., Brdiczka D., Nicolay K., Eppenberger H. M. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J. 1992 Jan 1;281(Pt 1):21–40. doi: 10.1042/bj2810021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyss M., Schlegel J., James P., Eppenberger H. M., Wallimann T. Mitochondrial creatine kinase from chicken brain. Purification, biophysical characterization, and generation of heterodimeric and heterooctameric molecules with subunits of other creatine kinase isoenzymes. J Biol Chem. 1990 Sep 15;265(26):15900–15908. [PubMed] [Google Scholar]
- Wyss M., Smeitink J., Wevers R. A., Wallimann T. Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. Biochim Biophys Acta. 1992 Sep 25;1102(2):119–166. doi: 10.1016/0005-2728(92)90096-k. [DOI] [PubMed] [Google Scholar]
- Yamauchi K., Yamamoto T., Hayashi H., Koya S., Takikawa H., Toyoshima K., Horiuchi R. Sequence of membrane-associated thyroid hormone binding protein from bovine liver: its identity with protein disulphide isomerase. Biochem Biophys Res Commun. 1987 Aug 14;146(3):1485–1492. doi: 10.1016/0006-291x(87)90817-5. [DOI] [PubMed] [Google Scholar]
- van der Walt B., Nikodem V. M., Cahnmann H. J. Use of un-derivatized thyroid hormones for photoaffinity labeling of binding proteins. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3508–3512. doi: 10.1073/pnas.79.11.3508. [DOI] [PMC free article] [PubMed] [Google Scholar]



