Abstract
Using AMP deaminase (AMP aminohydrolase; EC 3.5.4.6) purified from rabbit left-ventricular heart tissue, we report direct investigation of the potential for cardiac AMP deaminase activity to be regulated by kinase-mediated phosphorylation. Rabbit heart AMP deaminase served as a substrate for Ca2+/phospholipid-dependent protein kinase (protein kinase C; PKC) exclusively; no other mammalian protein kinase phosphorylated the enzyme. PKC-dependent AMP deaminase phosphorylation was rapid, linear with respect to time and the concentrations of PKC and AMP deaminase in the reaction, and inhibitable by staurosporine. Upon phosphorylation, the apparent Km of cardiac AMP deaminase decreased from 5.6 mM to 1.2 mM, without effect on the Vmax. Whether phosphorylated or not, rabbit heart AMP deaminase was inhibited by 1.0 mM GTP, which decreased the Vmax. by approximately 50% in each case. PKC-dependent phosphorylation of cardiac AMP deaminase did not alter the enzyme's allosterism toward millimolar ATP or ADP: both nucleotides at 1.0 mM concentration decreased the apparent Km to approximately 0.5 mM. Treatment of cardiac phospho-AMP deaminase with either the protein phosphatase calcineurin or alkaline phosphatase generated a dephosphorylated form which displayed molecular and kinetic properties identical with those of the originally isolated enzyme. These data raise the possibility that a phosphorylation-dephosphorylation mechanism may regulate flux through AMP deaminase in the heart under pathological conditions, such as myocardial ischaemia, characterized by PKC activation and adenylate depletion.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander D., Goris J., Marais R., Rothbard J., Merlevede W., Crumpton M. J. Dephosphorylation of the human T lymphocyte CD3 antigen. Eur J Biochem. 1989 Apr 15;181(1):55–65. doi: 10.1111/j.1432-1033.1989.tb14693.x. [DOI] [PubMed] [Google Scholar]
- Barford D. Molecular mechanisms for the control of enzymic activity by protein phosphorylation. Biochim Biophys Acta. 1991 Dec 3;1133(1):55–62. doi: 10.1016/0167-4889(91)90241-o. [DOI] [PubMed] [Google Scholar]
- Barsacchi R., Ranieri-Raggi M., Bergamini C., Raggi A. Adenylate metabolism in the heart. Regulatory properties of rabbit cardiac adenylate deaminase. Biochem J. 1979 Aug 15;182(2):361–366. doi: 10.1042/bj1820361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bialojan C., Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J. 1988 Nov 15;256(1):283–290. doi: 10.1042/bj2560283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHANEY A. L., MARBACH E. P. Modified reagents for determination of urea and ammonia. Clin Chem. 1962 Apr;8:130–132. [PubMed] [Google Scholar]
- Casnellie J. E., Ives H. E., Jamieson J. D., Greengard P. Cyclic GMP-dependent protein phosphorylation in intact medial tissue and isolated cells from vascular smooth muscle. J Biol Chem. 1980 Apr 25;255(8):3770–3776. [PubMed] [Google Scholar]
- Chapman A. G., Atkinson D. E. Stabilization of adenylate energy charge by the adenylate deaminase reaction. J Biol Chem. 1973 Dec 10;248(23):8309–8312. [PubMed] [Google Scholar]
- Corbin J. D., Reimann E. M. Assay of cyclic AMP-dependent protein kinases. Methods Enzymol. 1974;38:287–290. doi: 10.1016/0076-6879(74)38044-5. [DOI] [PubMed] [Google Scholar]
- Hohl C. M., Wimsatt D. K., Brierley G. P., Altschuld R. A. IMP production by ATP-depleted adult rat heart cells. Effects of glycolysis and alpha 1-adrenergic stimulation. Circ Res. 1989 Sep;65(3):754–760. doi: 10.1161/01.res.65.3.754. [DOI] [PubMed] [Google Scholar]
- Hu B., Altschuld R. A., Hohl C. M. Phorbol esters and cyclic AMP activate AMP deaminase in adult rat cardiac myocytes. Arch Biochem Biophys. 1991 Nov 15;291(1):100–106. doi: 10.1016/0003-9861(91)90110-5. [DOI] [PubMed] [Google Scholar]
- Jennings R. B., Steenbergen C., Jr Nucleotide metabolism and cellular damage in myocardial ischemia. Annu Rev Physiol. 1985;47:727–749. doi: 10.1146/annurev.ph.47.030185.003455. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lai Y., Nairn A. C., Greengard P. Autophosphorylation reversibly regulates the Ca2+/calmodulin-dependence of Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4253–4257. doi: 10.1073/pnas.83.12.4253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee Y. P., Wang M. H. Studies of the nature of the inhibitory action of inorganic phosphate, fluoride, and detergents on 5'-adenylic acid deaminase activity and on the activation by adenosine triphosphate. J Biol Chem. 1968 May 10;243(9):2260–2265. [PubMed] [Google Scholar]
- Lowenstein J., Tornheim K. Ammonia production in muscle: the purine nucleotide cycle. Science. 1971 Jan 29;171(3969):397–400. doi: 10.1126/science.171.3969.397. [DOI] [PubMed] [Google Scholar]
- Meghji P., Middleton K. M., Newby A. C. Absolute rates of adenosine formation during ischaemia in rat and pigeon hearts. Biochem J. 1988 Feb 1;249(3):695–703. doi: 10.1042/bj2490695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer W., Follmann H. A study of the substrate and inhibitor specificities of AMP aminohydrolase, 5'-nucleotidase, and adenylate kinase with adenosine carboxylates of variable chain length. Z Naturforsch C. 1980 Mar-Apr;35(3-4):273–278. doi: 10.1515/znc-1980-3-416. [DOI] [PubMed] [Google Scholar]
- Ogasawara N., Goto H., Yamada Y., Watanabe T., Asano T. AMP deaminase isozymes in human tissues. Biochim Biophys Acta. 1982 Feb 2;714(2):298–306. doi: 10.1016/0304-4165(82)90337-3. [DOI] [PubMed] [Google Scholar]
- Prasad M. R., Jones R. M. Enhanced membrane protein kinase C activity in myocardial ischemia. Basic Res Cardiol. 1992 Jan-Feb;87(1):19–26. doi: 10.1007/BF00795386. [DOI] [PubMed] [Google Scholar]
- Prasad M. R., Jones R. M. Enhanced membrane protein kinase C activity in myocardial ischemia. Basic Res Cardiol. 1992 Jan-Feb;87(1):19–26. doi: 10.1007/BF00795386. [DOI] [PubMed] [Google Scholar]
- Ranieri-Raggi M., Raggi A. Regulation of skeletal-muscle AMP deaminase. Evidence for a highly pH-dependent inhibition by ATP of the homogeneous derivative of the rabbit enzyme yielded by limited proteolysis. Biochem J. 1990 Dec 15;272(3):755–759. doi: 10.1042/bj2720755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strasser R. H., Braun-Dullaeus R., Walendzik H., Marquetant R. Alpha 1-receptor-independent activation of protein kinase C in acute myocardial ischemia. Mechanisms for sensitization of the adenylyl cyclase system. Circ Res. 1992 Jun;70(6):1304–1312. doi: 10.1161/01.res.70.6.1304. [DOI] [PubMed] [Google Scholar]
- Swain J. L., Sabina R. L., McHale P. A., Greenfield J. C., Jr, Holmes E. W. Prolonged myocardial nucleotide depletion after brief ischemia in the open-chest dog. Am J Physiol. 1982 May;242(5):H818–H826. doi: 10.1152/ajpheart.1982.242.5.H818. [DOI] [PubMed] [Google Scholar]
- Taegtmeyer H. On the role of the purine nucleotide cycle in the isolated working rat heart. J Mol Cell Cardiol. 1985 Oct;17(10):1013–1018. doi: 10.1016/s0022-2828(85)80082-1. [DOI] [PubMed] [Google Scholar]
- Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):397–402. doi: 10.1016/0006-291x(86)90008-2. [DOI] [PubMed] [Google Scholar]
- Thakkar J. K., Janero D. R., Yarwood C., Sharif H., Hreniuk D. Isolation and characterization of AMP deaminase from mammalian (rabbit) myocardium. Biochem J. 1993 Mar 1;290(Pt 2):335–341. doi: 10.1042/bj2900335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tovmasian E. K., Hairapetian R. L., Bykova E. V., Severin S. E., Jr, Haroutunian A. V. Phosphorylation of the skeletal muscle AMP-deaminase by protein kinase C. FEBS Lett. 1990 Jan 1;259(2):321–323. doi: 10.1016/0014-5793(90)80037-j. [DOI] [PubMed] [Google Scholar]
- Van Belle H., Wynants J., Goossens F. Formation and release of nucleosides in the ischemic myocardium. Is the guinea-pig the exception? Basic Res Cardiol. 1985 Nov-Dec;80(6):653–660. doi: 10.1007/BF01907864. [DOI] [PubMed] [Google Scholar]
- Yasuda I., Kishimoto A., Tanaka S., Tominaga M., Sakurai A., Nishizuka Y. A synthetic peptide substrate for selective assay of protein kinase C. Biochem Biophys Res Commun. 1990 Feb 14;166(3):1220–1227. doi: 10.1016/0006-291x(90)90996-z. [DOI] [PubMed] [Google Scholar]
- Zielke C. L., Suelter C. H. Substrate specificity and aspects of deamination catalyzed by rabbit muscle 5'-adenylic acid aminohydrolase. J Biol Chem. 1971 Mar 10;246(5):1313–1317. [PubMed] [Google Scholar]

