Abstract
The constitutive and inducible cytosolic glutathione S-transferase (EC 2.5.1.18) subunit compositions of parenchymal cells (hepatocytes) and biliary epithelial cells (BEC) from rat liver have been quantitatively analysed using reverse-phase h.p.l.c. Hepatocytes, analysed in the absence of non-parenchymal cells, expressed constitutively the following subunits, in order of their concentration: 3, 4, 2, 1a, 1b, 8, 6 and 10. BEC express constitutively only four of the GST subunits expressed by hepatocytes and these are, in order of their concentration: subunits 2, 7, 4 and 3. Notable differences from hepatocytes are that BEC completely lack the Alpha-class subunits 1a and 1b that are major subunits in hepatocytes, Mu-class subunits make up a very low proportion of the total, and the Pi-class subunit 7 is a major subunit in BEC, whereas it is essentially absent from hepatocytes. For the first time, the effects of the inducing agents phenobarbitone (PB), beta-naphthoflavone (beta-NF) and ethoxyquin (EQ) have been characterized in a comprehensive and quantitative manner in both cell types. PB, beta-NF and EQ increased total GST protein in hepatocytes by approx. 2-fold, 3-fold and 4-fold respectively. Subunits significantly induced in hepatocytes were (in order of fold-induction): by PB, 1b > 8 > 3 > 2 > 4; by beta-NF, 1b > 8 > 2 > 3 > 4; and by EQ, 7 > 1b > 10 > 8 > 3 > 2 > 1a > 4. In BEC, neither PB nor beta-NF had significant effects on the total amount of GST protein, although PB did significantly induce subunit 3 at the expense of other subunits. EQ increased total GST protein nearly 5-fold in BEC, subunits 7 and 3 being induced dramatically above constitutive levels.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albano E., Bellomo G., Parola M., Carini R., Dianzani M. U. Stimulation of lipid peroxidation increases the intracellular calcium content of isolated hepatocytes. Biochim Biophys Acta. 1991 Feb 19;1091(3):310–316. doi: 10.1016/0167-4889(91)90194-3. [DOI] [PubMed] [Google Scholar]
- Alin P., Danielson U. H., Mannervik B. 4-Hydroxyalk-2-enals are substrates for glutathione transferase. FEBS Lett. 1985 Jan 7;179(2):267–270. doi: 10.1016/0014-5793(85)80532-9. [DOI] [PubMed] [Google Scholar]
- Benson A. M., Batzinger R. P., Ou S. Y., Bueding E., Cha Y. N., Talalay P. Elevation of hepatic glutathione S-transferase activities and protection against mutagenic metabolites of benzo(a)pyrene by dietary antioxidants. Cancer Res. 1978 Dec;38(12):4486–4495. [PubMed] [Google Scholar]
- Burt R. K., Garfield S., Johnson K., Thorgeirsson S. S. Transformation of rat liver epithelial cells with v-H-ras or v-raf causes expression of MDR-1, glutathione-S-transferase-P and increased resistance to cytotoxic chemicals. Carcinogenesis. 1988 Dec;9(12):2329–2332. doi: 10.1093/carcin/9.12.2329. [DOI] [PubMed] [Google Scholar]
- Di Ilio C., Aceto A., Columbano A., Ledda-Columbano G. M., Federici G. Induction of rat liver glutathione transferase subunit 7 by lead nitrate. Cancer Lett. 1989 Aug;46(3):167–171. doi: 10.1016/0304-3835(89)90126-2. [DOI] [PubMed] [Google Scholar]
- Di Simplicio P., Jensson H., Mannervik B. Effects of inducers of drug metabolism on basic hepatic forms of mouse glutathione transferase. Biochem J. 1989 Nov 1;263(3):679–685. doi: 10.1042/bj2630679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayes J. D., Judah D. J., McLellan L. I., Kerr L. A., Peacock S. D., Neal G. E. Ethoxyquin-induced resistance to aflatoxin B1 in the rat is associated with the expression of a novel alpha-class glutathione S-transferase subunit, Yc2, which possesses high catalytic activity for aflatoxin B1-8,9-epoxide. Biochem J. 1991 Oct 15;279(Pt 2):385–398. doi: 10.1042/bj2790385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiley C., Fryer A., Bell J., Hume R., Strange R. C. The human glutathione S-transferases. Immunohistochemical studies of the developmental expression of Alpha- and Pi-class isoenzymes in liver. Biochem J. 1988 Aug 15;254(1):255–259. doi: 10.1042/bj2540255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Histopathology of the intrahepatic biliary tree. Liver. 1983 Jun;3(3):161–175. [PubMed] [Google Scholar]
- Howie A. F., Hayes P. C., Bouchier I. A., Hayes J. D., Beckett G. J. Glutathione S-transferase in human bile. Clin Chim Acta. 1989 Oct 16;184(3):269–278. doi: 10.1016/0009-8981(89)90060-0. [DOI] [PubMed] [Google Scholar]
- Igarashi T., Irokawa N., Ono S., Ohmori S., Ueno K., Kitagawa H., Satoh T. Difference in the effects of phenobarbital and 3-methylcholanthrene treatment on subunit composition of hepatic glutathione S-transferase in male and female rats. Xenobiotica. 1987 Feb;17(2):127–137. doi: 10.3109/00498258709043923. [DOI] [PubMed] [Google Scholar]
- Jensson H., Eriksson L. C., Mannervik B. Selective expression of glutathione transferase isoenzymes in chemically induced preneoplastic rat hepatocyte nodules. FEBS Lett. 1985 Jul 22;187(1):115–120. doi: 10.1016/0014-5793(85)81225-4. [DOI] [PubMed] [Google Scholar]
- Kensler T. W., Egner P. A., Davidson N. E., Roebuck B. D., Pikul A., Groopman J. D. Modulation of aflatoxin metabolism, aflatoxin-N7-guanine formation, and hepatic tumorigenesis in rats fed ethoxyquin: role of induction of glutathione S-transferases. Cancer Res. 1986 Aug;46(8):3924–3931. [PubMed] [Google Scholar]
- Kensler T. W., Egner P. A., Trush M. A., Bueding E., Groopman J. D. Modification of aflatoxin B1 binding to DNA in vivo in rats fed phenolic antioxidants, ethoxyquin and a dithiothione. Carcinogenesis. 1985 May;6(5):759–763. doi: 10.1093/carcin/6.5.759. [DOI] [PubMed] [Google Scholar]
- Kispert A., Meyer D. J., Lalor E., Coles B., Ketterer B. Purification and characterization of a labile rat glutathione transferase of the Mu class. Biochem J. 1989 Jun 15;260(3):789–793. doi: 10.1042/bj2600789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitahara A., Satoh K., Nishimura K., Ishikawa T., Ruike K., Sato K., Tsuda H., Ito N. Changes in molecular forms of rat hepatic glutathione S-transferase during chemical hepatocarcinogenesis. Cancer Res. 1984 Jun;44(6):2698–2703. [PubMed] [Google Scholar]
- Lai H. C., Li N., Weiss M. J., Reddy C. C., Tu C. P. The nucleotide sequence of a rat liver glutathione S-transferase subunit cDNA clone. J Biol Chem. 1984 May 10;259(9):5536–5542. [PubMed] [Google Scholar]
- Mannervik B., Alin P., Guthenberg C., Jensson H., Tahir M. K., Warholm M., Jörnvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7202–7206. doi: 10.1073/pnas.82.21.7202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manson M. M., Green J. A., Driver H. E. Ethoxyquin alone induces preneoplastic changes in rat kidney whilst preventing induction of such lesions in liver by aflatoxin B1. Carcinogenesis. 1987 May;8(5):723–728. doi: 10.1093/carcin/8.5.723. [DOI] [PubMed] [Google Scholar]
- Mathis G. A., Walls S. A., D'Amico P., Gengo T. F., Sirica A. E. Enzyme profile of rat bile ductular epithelial cells in reference to the resistance phenotype in hepatocarcinogenesis. Hepatology. 1989 Mar;9(3):477–485. doi: 10.1002/hep.1840090323. [DOI] [PubMed] [Google Scholar]
- McLellan L. I., Kerr L. A., Cronshaw A. D., Hayes J. D. Regulation of mouse glutathione S-transferases by chemoprotectors. Molecular evidence for the existence of three distinct alpha-class glutathione S-transferase subunits, Ya1, Ya2, and Ya3, in mouse liver. Biochem J. 1991 Jun 1;276(Pt 2):461–469. doi: 10.1042/bj2760461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer D. J., Beale D., Tan K. H., Coles B., Ketterer B. Glutathione transferases in primary rat hepatomas: the isolation of a form with GSH peroxidase activity. FEBS Lett. 1985 May 6;184(1):139–143. doi: 10.1016/0014-5793(85)80670-0. [DOI] [PubMed] [Google Scholar]
- Meyer D. J., Gilmore K. S., Coles B., Dalton K., Hulbert P. B., Ketterer B. Structural distinction of rat GSH transferase subunit 10. Biochem J. 1991 Mar 1;274(Pt 2):619–619. doi: 10.1042/bj2740619a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer D. J., Lalor E., Coles B., Kispert A., Alin P., Mannervik B., Ketterer B. Single-step purification and h.p.l.c. analysis of glutathione transferase 8-8 in rat tissues. Biochem J. 1989 Jun 15;260(3):785–788. doi: 10.1042/bj2600785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ostlund Farrants A. K., Meyer D. J., Coles B., Southan C., Aitken A., Johnson P. J., Ketterer B. The separation of glutathione transferase subunits by using reverse-phase high-pressure liquid chromatography. Biochem J. 1987 Jul 15;245(2):423–428. doi: 10.1042/bj2450423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parola M., Cheeseman K. H., Biocca M. E., Dianzani M. U., Slater T. F. Biochemical studies on bile duct epithelial cells isolated from rat liver. J Hepatol. 1990 May;10(3):341–345. doi: 10.1016/0168-8278(90)90143-f. [DOI] [PubMed] [Google Scholar]
- Parola M., Cheeseman K. H., Biocca M. E., Dianzani M. U., Slater T. F. Isolation and characterization of biliary epithelial cells from normal rat liver. J Hepatol. 1988 Apr;6(2):175–186. doi: 10.1016/s0168-8278(88)80029-1. [DOI] [PubMed] [Google Scholar]
- Parola M., Cheeseman K. H., Biocca M. E., Dianzani M. U., Slater T. F. Menadione and cumene hydroperoxide induced cytotoxicity in biliary epithelial cells isolated from rat liver. Biochem Pharmacol. 1990 Jun 1;39(11):1727–1734. doi: 10.1016/0006-2952(90)90118-5. [DOI] [PubMed] [Google Scholar]
- Paulson K. E., Darnell J. E., Jr, Rushmore T., Pickett C. B. Analysis of the upstream elements of the xenobiotic compound-inducible and positionally regulated glutathione S-transferase Ya gene. Mol Cell Biol. 1990 May;10(5):1841–1852. doi: 10.1128/mcb.10.5.1841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pemble S. E., Taylor J. B., Ketterer B. Tissue distribution of rat glutathione transferase subunit 7, a hepatoma marker. Biochem J. 1986 Dec 15;240(3):885–889. doi: 10.1042/bj2400885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pickett C. B., Telakowski-Hopkins C. A., Ding G. J., Argenbright L., Lu A. Y. Rat liver glutathione S-transferases. Complete nucleotide sequence of a glutathione S-transferase mRNA and the regulation of the Ya, Yb, and Yc mRNAs by 3-methylcholanthrene and phenobarbital. J Biol Chem. 1984 Apr 25;259(8):5182–5188. [PubMed] [Google Scholar]
- Poli G., Cheeseman K., Slater T. F., Dianzani M. U. The role of lipid peroxidation in CCl4-induced damage to liver microsomal enzymes: comparative studies in vitro using microsomes and isolated liver cells. Chem Biol Interact. 1981 Oct;37(1-2):13–24. doi: 10.1016/0009-2797(81)90162-9. [DOI] [PubMed] [Google Scholar]
- Redick J. A., Jakoby W. B., Baron J. Immunohistochemical localization of glutathione S-transferases in livers of untreated rats. J Biol Chem. 1982 Dec 25;257(24):15200–15203. [PubMed] [Google Scholar]
- Rich K., Lodola A. Cytochrome P450 in highly purified suspension of nonparenchymal liver cells. Cell Biochem Funct. 1989 Oct;7(4):275–282. doi: 10.1002/cbf.290070406. [DOI] [PubMed] [Google Scholar]
- Rogiers V., Coecke S., Vandenberghe Y., Morel F., Callaerts A., Verleye G., Van Bezooijen C. F., Guillouzo A., Vercruysse A. Effect of the aging process on the gender and phenobarbital dependent expression of glutathione S-transferase subunits in brown Norway rat liver. Biochem Pharmacol. 1991 Jul 15;42(3):491–498. doi: 10.1016/0006-2952(91)90310-2. [DOI] [PubMed] [Google Scholar]
- Rushmore T. H., Harris L., Nagai M., Sharma R. N., Hayes M. A., Cameron R. G., Murray R. K., Farber E. Purification and characterization of P-52 (glutathione S-transferase-P or 7-7) from normal liver and putative preneoplastic liver nodules. Cancer Res. 1988 May 15;48(10):2805–2812. [PubMed] [Google Scholar]
- Rushmore T. H., Morton M. R., Pickett C. B. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem. 1991 Jun 25;266(18):11632–11639. [PubMed] [Google Scholar]
- SCHAFFNER F., POPPER H. Electron microscopic studies of normal and proliferated bile ductules. Am J Pathol. 1961 Apr;38:393–410. [PMC free article] [PubMed] [Google Scholar]
- Sato K. Glutathione transferases as markers of preneoplasia and neoplasia. Adv Cancer Res. 1989;52:205–255. doi: 10.1016/s0065-230x(08)60214-6. [DOI] [PubMed] [Google Scholar]
- Schrenk D., Eisenmann-Tappe I., Gebhardt R., Mayer D., el Mouelhi M., Röhrdanz E., Münzel P., Bock K. W. Drug metabolizing enzyme activities in rat liver epithelial cell lines, hepatocytes and bile duct cells. Biochem Pharmacol. 1991 Jun 1;41(11):1751–1757. doi: 10.1016/0006-2952(91)90180-d. [DOI] [PubMed] [Google Scholar]
- Sirica A. E., Mathis G. A., Sano N., Elmore L. W. Isolation, culture, and transplantation of intrahepatic biliary epithelial cells and oval cells. Pathobiology. 1990;58(1):44–64. doi: 10.1159/000163564. [DOI] [PubMed] [Google Scholar]
- Steinberg P., Lafranconi W. M., Wolf C. R., Waxman D. J., Oesch F., Friedberg T. Xenobiotic metabolizing enzymes are not restricted to parenchymal cells in rat liver. Mol Pharmacol. 1987 Oct;32(4):463–470. [PubMed] [Google Scholar]
- Steinberg P., Schlemper B., Molitor E., Platt K. L., Seidel A., Oesch F. Rat liver endothelial and Kupffer cell-mediated mutagenicity of polycyclic aromatic hydrocarbons and aflatoxin B1. Environ Health Perspect. 1990 Aug;88:71–76. doi: 10.1289/ehp.908871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinberg P., Schramm H., Schladt L., Robertson L. W., Thomas H., Oesch F. The distribution, induction and isoenzyme profile of glutathione S-transferase and glutathione peroxidase in isolated rat liver parenchymal, Kupffer and endothelial cells. Biochem J. 1989 Dec 15;264(3):737–744. doi: 10.1042/bj2640737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tahir M. K., Guthenberg C., Mannervik B. Glutathione transferases in rat hepatoma cells. Effects of ascites cells on the isoenzyme pattern in liver and induction of glutathione transferases in the tumour cells. Biochem J. 1989 Jan 1;257(1):215–220. doi: 10.1042/bj2570215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tatematsu M., Aoki T., Kagawa M., Mera Y., Ito N. Reciprocal relationship between development of glutathione S-transferase positive liver foci and proliferation of surrounding hepatocytes in rats. Carcinogenesis. 1988 Feb;9(2):221–225. doi: 10.1093/carcin/9.2.221. [DOI] [PubMed] [Google Scholar]
- Tavoloni N. The intrahepatic biliary epithelium: an area of growing interest in hepatology. Semin Liver Dis. 1987 Nov;7(4):280–292. doi: 10.1055/s-2008-1040583. [DOI] [PubMed] [Google Scholar]
- Tee L. B., Gilmore K. S., Meyer D. J., Ketterer B., Vandenberghe Y., Yeoh G. C. Expression of glutathione S-transferase during rat liver development. Biochem J. 1992 Feb 15;282(Pt 1):209–218. doi: 10.1042/bj2820209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vos R. M., Snoek M. C., van Berkel W. J., Müller F., van Bladeren P. J. Differential induction of rat hepatic glutathione S-transferase isoenzymes by hexachlorobenzene and benzyl isothiocyanate. Comparison with induction by phenobarbital and 3-methylcholanthrene. Biochem Pharmacol. 1988 Mar 15;37(6):1077–1082. doi: 10.1016/0006-2952(88)90513-8. [DOI] [PubMed] [Google Scholar]
