Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Jun 15;284(Pt 3):721–724. doi: 10.1042/bj2840721

Variations in hepatic carbon flux during unrestricted feeding.

M C Sugden 1, R M Howard 1, M J Holness 1
PMCID: PMC1132598  PMID: 1622391

Abstract

Previous findings have established a pivotal role for hepatic pyruvate dehydrogenase complex (PDH) in regulating hepatic carbon flux during the starved-to-fed and fed-to-starved nutritional transitions [Holness, McLennan, Palmer & Sugden (1988) Biochem. J. 252, 325-330; Holness & Sugden (1990) Biochem. J. 268, 77-81]. We have therefore examined liver PDH activities during the light and dark phases of the feeding cycle in the adult rat in relation to hepatic glycogenesis, fatty acid synthesis and cholesterogenesis. There was significant synchronous suppression of lipogenesis and glycogenesis during the light phase; rates were restored asynchronously during the dark (feeding) phase. Glycogen concentrations declined during the light phase and increased during the dark phase. Despite quite dramatic changes in rates of glycogen and lipid synthesis and hepatic glycogen concentrations during the light and dark phases, hepatic PDHa (active form) activity remained relatively unchanged. Qualitative and quantitative differences in the pattern of change in rates of synthesis of fatty acid and cholesterol suggested regulation at pathway-specific sites distal to PDH.

Full text

PDF
721

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bruckdorfer K. R., Kang S. S., Khan I. H., Bourne A. R., Yudkin J. Diurnal changes in the concentrations of plasma lipids, sugars, insulin and corticosterone in rats fed diets containing various carbohydrates. Horm Metab Res. 1974 Mar;6(2):99–106. doi: 10.1055/s-0028-1093890. [DOI] [PubMed] [Google Scholar]
  2. Clark D. G., Rognstad R., Katz J. Lipogenesis in rat hepatocytes. J Biol Chem. 1974 Apr 10;249(7):2028–2036. [PubMed] [Google Scholar]
  3. Cornish S., Cawthorne M. A. Fatty acid synthesis in mice during the 24hr cycle and during meal-feeding. Horm Metab Res. 1978 Jul;10(4):286–290. doi: 10.1055/s-0028-1093416. [DOI] [PubMed] [Google Scholar]
  4. Edwards P. A., Muroya H., Gould R. G. In vivo demonstration of the circadian thythm of cholesterol biosynthesis in the liver and intestine of the rat. J Lipid Res. 1972 May;13(3):396–401. [PubMed] [Google Scholar]
  5. Ferré P., Leturque A., Burnol A. F., Penicaud L., Girard J. A method to quantify glucose utilization in vivo in skeletal muscle and white adipose tissue of the anaesthetized rat. Biochem J. 1985 May 15;228(1):103–110. doi: 10.1042/bj2280103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gibbons G. F., Pullinger C. R., Munday M. R., Williamson D. H. Regulation of cholesterol synthesis in the liver and mammary gland of the lactating rat. Biochem J. 1983 Jun 15;212(3):843–848. doi: 10.1042/bj2120843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hems D. A., Rath E. A., Verrinder T. R. Fatty acid synthesis in liver and adipose tissue of normal and genetically obese (ob/ob) mice during the 24-hour cycle. Biochem J. 1975 Aug;150(2):167–173. doi: 10.1042/bj1500167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holness M. J., Cook E. B., Sugden M. C. Regulation of hepatic fructose 2,6-bisphosphate concentrations and lipogenesis after re-feeding in euthyroid and hyperthyroid rats. A regulatory role for glycogenesis. Biochem J. 1988 Jun 1;252(2):357–362. doi: 10.1042/bj2520357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holness M. J., French T. J., Sugden M. C. Hepatic glycogen synthesis on carbohydrate re-feeding after starvation. A regulatory role for pyruvate dehydrogenase in liver and extrahepatic tissues. Biochem J. 1986 Apr 15;235(2):441–445. doi: 10.1042/bj2350441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holness M. J., MacLennan P. A., Palmer T. N., Sugden M. C. The disposition of carbohydrate between glycogenesis, lipogenesis and oxidation in liver during the starved-to-fed transition. Biochem J. 1988 Jun 1;252(2):325–330. doi: 10.1042/bj2520325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holness M. J., Sugden M. C. Pyruvate dehydrogenase activities and rates of lipogenesis during the fed-to-starved transition in liver and brown adipose tissue of the rat. Biochem J. 1990 May 15;268(1):77–81. doi: 10.1042/bj2680077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holness M. J., Sugden M. C. Pyruvate dehydrogenase activities during the fed-to-starved transition and on re-feeding after acute or prolonged starvation. Biochem J. 1989 Mar 1;258(2):529–533. doi: 10.1042/bj2580529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Issad T., Pénicaud L., Ferré P., Kandé J., Baudon M. A., Girard J. Effects of fasting on tissue glucose utilization in conscious resting rats. Major glucose-sparing effect in working muscles. Biochem J. 1987 Aug 15;246(1):241–244. doi: 10.1042/bj2460241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. James D. E., Kraegen E. W., Chisholm D. J. Muscle glucose metabolism in exercising rats: comparison with insulin stimulation. Am J Physiol. 1985 May;248(5 Pt 1):E575–E580. doi: 10.1152/ajpendo.1985.248.5.E575. [DOI] [PubMed] [Google Scholar]
  15. Kimura T., Maji T., Ashida K. Periodicity of food intake and lipogenesis in rats subjected to two different feeding plans. J Nutr. 1970 Jun;100(6):691–697. doi: 10.1093/jn/100.6.691. [DOI] [PubMed] [Google Scholar]
  16. Munday M. R., Milic M. R., Takhar S., Holness M. J., Sugden M. C. The short-term regulation of hepatic acetyl-CoA carboxylase during starvation and re-feeding in the rat. Biochem J. 1991 Dec 15;280(Pt 3):733–737. doi: 10.1042/bj2800733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Munday M. R., Williamson D. H. Diurnal variations in food intake and in lipogenesis in mammary gland and liver of lactating rats. Biochem J. 1983 Jul 15;214(1):183–187. doi: 10.1042/bj2140183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Randle P. J. Fuel selection in animals. Biochem Soc Trans. 1986 Oct;14(5):799–806. doi: 10.1042/bst0140799. [DOI] [PubMed] [Google Scholar]
  19. Salmon D. M., Bowen N. L., Hems D. A. Synthesis of fatty acids in the perused mouse liver. Biochem J. 1974 Sep;142(3):611–618. doi: 10.1042/bj1420611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977 May;28(5):897–916. doi: 10.1111/j.1471-4159.1977.tb10649.x. [DOI] [PubMed] [Google Scholar]
  21. Sugden M. C., Liu Y. L., Holness M. J. Glucose utilization and disposal in cardiothoracic and skeletal muscles during the starved-to-fed transition in the rat. Biochem J. 1990 Nov 15;272(1):133–137. doi: 10.1042/bj2720133. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES