Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Jun 15;284(Pt 3):761–766. doi: 10.1042/bj2840761

Effect of treatment in vivo of rats with bacterial endotoxin on fructose 2,6-bisphosphate metabolism and L-pyruvate kinase activity and flux in isolated liver cells.

E D Ceppi 1, R G Knowles 1, K M Carpenter 1, M A Titheradge 1
PMCID: PMC1132604  PMID: 1320377

Abstract

The effect of treatment of rats with bacterial endotoxin on fructose 2,6-bisphosphate (Fru-2,6-P2) metabolism was investigated in isolated liver cells prepared from 18 h-starved animals. The results obtained support the hypothesis that a stimulation of 6-phosphofructo-1-kinase (PFK-1) activity and an inhibition of fructose-1,6-bisphosphatase (Fru-1,6-P2ase) may be one mechanism underlying the inhibition of gluconeogenesis from lactate and pyruvate by endotoxin. We suggest that the stimulation of PFK-1 and inhibition of Fru-1,6-P2ase activity is the result of a 2-3-fold increase in Fru-2,6-P2. The latter is not due to changes in the total activity or phosphorylation state of the bifunctional 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase, but appears to be the result of a decrease in the cytosolic concentration of phosphoenolpyruvate (PEP), an inhibitor of PFK-2 activity. The effect of endotoxin is resistant to the presence of glucagon, which has comparable effects in cells prepared from both control and endotoxin-treated animals. The mechanism by which endotoxin treatment of the rat decreases PEP and gluconeogenesis remains to be established. However, it does not involve alterations in either the total activity or the phosphorylation state of pyruvate kinase, nor does it involve increased flux through this enzyme in the intact cell, which is in fact decreased in this model of septic shock. It is suggested that the decreased flux may result from a lower rate of formation of PEP, suggesting that the prime lesion in sepsis is an inhibition of one or more of the steps leading to PEP formation.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan E. H., Titheradge M. A. Effect of treatment of rats with dexamethasone in vivo on gluconeogenesis and metabolite compartmentation in subsequently isolated hepatocytes. Biochem J. 1984 Apr 1;219(1):117–123. doi: 10.1042/bj2190117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ardawi M. S., Ashy A. A., Jamal Y. S., Khoja S. M. Metabolic control of hepatic gluconeogenesis in response to sepsis. J Lab Clin Med. 1989 Nov;114(5):579–586. [PubMed] [Google Scholar]
  3. Berry L. J. Bacterial toxins. CRC Crit Rev Toxicol. 1977 Nov;5(3):239–318. doi: 10.3109/10408447709082601. [DOI] [PubMed] [Google Scholar]
  4. Bontemps F., Hue L., Hers H. G. Phosphorylation of glucose in isolated rat hepatocytes. Sigmoidal kinetics explained by the activity of glucokinase alone. Biochem J. 1978 Aug 15;174(2):603–611. doi: 10.1042/bj1740603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brocks D. G., Siess E. A., Wieland O. H. Validity of the digitonin method for metabolite compartmentation in isolated hepatocytes. Biochem J. 1980 Apr 15;188(1):207–212. doi: 10.1042/bj1880207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CHANEY A. L., MARBACH E. P. Modified reagents for determination of urea and ammonia. Clin Chem. 1962 Apr;8:130–132. [PubMed] [Google Scholar]
  7. Claus T. H., Schlumpf J. R., El-Maghrabi M. R., Pilkis S. J. Regulation of the phosphorylation and activity of 6-phosphofructo 1-kinase in isolated hepatocytes by alpha-glycerolphosphate and fructose 2,6-bisphosphate. J Biol Chem. 1982 Jul 10;257(13):7541–7548. [PubMed] [Google Scholar]
  8. El-Maghrabi M. R., Claus T. H., Pilkis J., Pilkis S. J. Partial purification of a rat liver enzyme that catalyzes the formation of fructose 2,6-bisphosphate. Biochem Biophys Res Commun. 1981 Aug 14;101(3):1071–1077. doi: 10.1016/0006-291x(81)91858-1. [DOI] [PubMed] [Google Scholar]
  9. FAWCETT J. K., SCOTT J. E. A rapid and precise method for the determination of urea. J Clin Pathol. 1960 Mar;13:156–159. doi: 10.1136/jcp.13.2.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Filkins J. P., Buchanan B. J. In vivo vs in vitro effects of endotoxin on glycogenolysis, gluconeogenesis, and glucose utlization. Proc Soc Exp Biol Med. 1977 Jun;155(2):216–218. doi: 10.3181/00379727-155-39776. [DOI] [PubMed] [Google Scholar]
  11. Filkins J. P., Cornell R. P. Depression of hepatic gluconeogenesis and the hypoglycemia of endotoxin shock. Am J Physiol. 1974 Oct;227(4):778–781. doi: 10.1152/ajplegacy.1974.227.4.778. [DOI] [PubMed] [Google Scholar]
  12. Garrison J. C., Borland M. K., Florio V. A., Twible D. A. The role of calcium ion as a mediator of the effects of angiotensin II, catecholamines, and vasopressin on the phosphorylation and activity of enzymes in isolated hepatocytes. J Biol Chem. 1979 Aug 10;254(15):7147–7156. [PubMed] [Google Scholar]
  13. Hers H. G., Van Schaftingen E. Fructose 2,6-bisphosphate 2 years after its discovery. Biochem J. 1982 Jul 15;206(1):1–12. doi: 10.1042/bj2060001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hue L., Blackmore P. F., Exton J. H. Fructose 2,6-bisphosphate. Hormonal regulation and mechanism of its formation in liver. J Biol Chem. 1981 Sep 10;256(17):8900–8903. [PubMed] [Google Scholar]
  15. Hue L. The role of futile cycles in the regulation of carbohydrate metabolism in the liver. Adv Enzymol Relat Areas Mol Biol. 1981;52:247–331. doi: 10.1002/9780470122976.ch4. [DOI] [PubMed] [Google Scholar]
  16. Ingebretsen O. C., Bakken A. M., Segadal L., Farstad M. Determination of adenine nucleotides and inosine in human myocard by ion-pair reversed-phase high-performance liquid chromatography. J Chromatogr. 1982 Jun 18;242(1):119–126. doi: 10.1016/s0021-9673(00)87253-2. [DOI] [PubMed] [Google Scholar]
  17. Knowles R. G., Beevers S. J., Pogson C. I. The roles of glucagon, insulin and glucocorticoid hormones in the effects of sublethal doses of endotoxin on glucose homeostasis in rats. Biochem Pharmacol. 1986 Nov 15;35(22):4043–4048. doi: 10.1016/0006-2952(86)90025-0. [DOI] [PubMed] [Google Scholar]
  18. Knowles R. G., McCabe J. P., Beevers S. J., Pogson C. I. The characteristics and site of inhibition of gluconeogenesis in rat liver cells by bacterial endotoxin. Stimulation of phosphofructokinase-1. Biochem J. 1987 Mar 15;242(3):721–728. doi: 10.1042/bj2420721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LaNoue K. F., Mason A. D., Jr, Daniels J. P. The impairment of glucogenesis by gram negative infection. Metabolism. 1968 Jul;17(7):606–611. doi: 10.1016/0026-0495(68)90019-x. [DOI] [PubMed] [Google Scholar]
  20. Miller B. C., Ishikawa E., Uyeda K., Cottam G. L. Endotoxin increases the liver fructose 2,6-bisphosphate concentration in fasted rats. Biochem Biophys Res Commun. 1989 Dec 29;165(3):1072–1078. doi: 10.1016/0006-291x(89)92711-3. [DOI] [PubMed] [Google Scholar]
  21. Rognstad R. Cyclic AMP induced inhibition of pyruvate kinase flux in the intact liver cell. Biochem Biophys Res Commun. 1975 Apr 21;63(4):900–905. doi: 10.1016/0006-291x(75)90653-1. [DOI] [PubMed] [Google Scholar]
  22. Schwenke W. D., Soboll S., Seitz H. J., Sies H. Mitochondrial and cytosolic ATP/ADP ratios in rat liver in vivo. Biochem J. 1981 Nov 15;200(2):405–408. doi: 10.1042/bj2000405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Snyder I. S., Deters M., Ingle J. Effect of endotoxin on pyruvate kinase activity in mouse liver. Infect Immun. 1971 Aug;4(2):138–142. doi: 10.1128/iai.4.2.138-142.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Snyder I. S. Enzyme activities of the livers of mice infected with Salmonella typhimurium. Infect Immun. 1971 Oct;4(4):411–415. doi: 10.1128/iai.4.4.411-415.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spitzer J. A., Nelson K. M., Fish R. E. Time course of changes in gluconeogenesis from various precursors in chronically endotoxemic rats. Metabolism. 1985 Sep;34(9):842–849. doi: 10.1016/0026-0495(85)90109-x. [DOI] [PubMed] [Google Scholar]
  26. Stanley P. E., Williams S. G. Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal Biochem. 1969 Jun;29(3):381–392. doi: 10.1016/0003-2697(69)90323-6. [DOI] [PubMed] [Google Scholar]
  27. Van Schaftingen E., Davies D. R., Hers H. G. Inactivation of phosphofructokinase 2 by cyclic AMP - dependent protein kinase. Biochem Biophys Res Commun. 1981 Nov 16;103(1):362–368. doi: 10.1016/0006-291x(81)91701-0. [DOI] [PubMed] [Google Scholar]
  28. Van Schaftingen E. Fructose 2,6-bisphosphate. Adv Enzymol Relat Areas Mol Biol. 1987;59:315–395. doi: 10.1002/9780470123058.ch7. [DOI] [PubMed] [Google Scholar]
  29. Williamson J. R., Refino C., LaNoue K. Effects of E. coli lipopolysaccharide B treatment of rats on gluconeogenesis. In: Energy metabolism in trauma. Ciba Found Symp. 1970:145–154. doi: 10.1002/9780470719770.ch8. [DOI] [PubMed] [Google Scholar]
  30. Wolfe R. R., Elahi D., Spitzer J. J. Glucose and lactate kinetics after endotoxin administration in dogs. Am J Physiol. 1977 Feb;232(2):E180–E185. doi: 10.1152/ajpendo.1977.232.2.E180. [DOI] [PubMed] [Google Scholar]
  31. el-Maghrabi M. R., Claus T. H., Pilkis J., Pilkis S. J. Regulation of 6-phosphofructo-2-kinase activity by cyclic AMP-dependent phosphorylation. Proc Natl Acad Sci U S A. 1982 Jan;79(2):315–319. doi: 10.1073/pnas.79.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van Schaftingen E., Davies D. R., Hers H. G. Fructose-2,6-bisphosphatase from rat liver. Eur J Biochem. 1982 May;124(1):143–149. doi: 10.1111/j.1432-1033.1982.tb05917.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES