Abstract
1. A multiphasic modelling approach [Heirwegh, Meuwissen, Vermeir & De Smedt (1988) Biochem. J. 254, 101-108] is applied to systems containing poorly water-soluble amphipathic reactants, membrane material, soluble binding protein and acceptor protein (enzyme or membrane-bound carrier protein). 2. The field of application is constrained by the assumptions (i) that the amount of acceptor-bound substrate is small compared with the total amount and (ii) that all preceding chemical reactions and steps of mass transport are rapid compared with the chemical change monitored. 3. Initial-rate formulae for systems in which an acceptor interacts with unbound or protein-bound ligand are given. The saturation curves are near-hyperbolic or sigmoidal, depending both (i) on the form of ligand (unbound or protein-bound) acted upon by the acceptor and (ii) on whether the assays are performed at constant concentration of soluble binding protein Cp or at constant substrate/binding-site molar ratio RS. 4. Several diagnostic features permit unequivocal distinction between acceptor action on unbound or protein-bound substrate. In the former case, saturation curves, run at the same constant concentration of one of several binding proteins of increasing binding affinity, will show progressively increasing inhibition, the shape changing from near-hyperbolic at Km' less than K1' to sigmoidal at Km' greater than K1'.Km' is the effective Michaelis constant of the acceptor and K1' the effective dissociation constant of the binding sites of the soluble protein (for the sites with the higher binding affinity, if several classes of binding site are present on the protein). Alternatively, the maximum velocity obtained at constant RS less than or equal to 1 should increase hyperbolically with RS/(1-RS) for a binding protein with a single class of binding site. The formula that applies when the binding protein contains two classes of independent binding site is also available. When the acceptor acts on protein-bound ligand, the maximum velocity obtained at constant binding-protein concentration, Cp, increases hyperbolically with Cp. 5. Application of these and additional criteria to initial-rate data on the uptake of oleate into isolated cells supports a mechanism of carrier-mediated uptake of the unbound ligand and allows one to clarify some observations that hitherto had been poorly explained. 6. The influence of soluble binding protein on the reaction and substrate specificities of ligand/acceptor interaction is also discussed. 7. In its present state, data treatment for 'double binding-protein systems' generally requires separate determination of the binding parameters of the soluble binding protein.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abumrad N. A., Park J. H., Park C. R. Permeation of long-chain fatty acid into adipocytes. Kinetics, specificity, and evidence for involvement of a membrane protein. J Biol Chem. 1984 Jul 25;259(14):8945–8953. [PubMed] [Google Scholar]
- Abumrad N. A., Perkins R. C., Park J. H., Park C. R. Mechanism of long chain fatty acid permeation in the isolated adipocyte. J Biol Chem. 1981 Sep 10;256(17):9183–9191. [PubMed] [Google Scholar]
- Andersson S., Boström H., Danielsson H., Wikvall K. Purification from rabbit and rat liver of cytochromes P-450 involved in bile acid biosynthesis. Methods Enzymol. 1985;111:364–377. doi: 10.1016/s0076-6879(85)11023-2. [DOI] [PubMed] [Google Scholar]
- Backes W. L., Canady W. J. Methods for the evaluation of hydrophobic substrate binding to cytochrome P-450. Pharmacol Ther. 1981;12(1):133–158. doi: 10.1016/0163-7258(81)90078-4. [DOI] [PubMed] [Google Scholar]
- Bartlett K., Bartlett P., Bartlett N., Sherratt H. S. Kinetics of enzymes requiring long-chain acyl-CoA esters as substrates: effects of substrate binding to albumin. Biochem J. 1985 Jul 15;229(2):559–560. doi: 10.1042/bj2290559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bates J. H., Bates D. A., Mackillop W. On the difficulties of fitting the double Michaelis-Menten equation to kinetic data. J Theor Biol. 1987 Mar 21;125(2):237–241. doi: 10.1016/s0022-5193(87)80044-9. [DOI] [PubMed] [Google Scholar]
- Beck J. S., Goren H. J. Simulation of association curves and 'Scatchard' plots of binding reactions where ligand and receptor are degraded or internalized. J Recept Res. 1983;3(5):561–577. doi: 10.3109/10799898309041948. [DOI] [PubMed] [Google Scholar]
- Blauer G., Lavie E., Silfen J. Relative affinities of bilirubin for serum albumins from different species. Biochim Biophys Acta. 1977 May 27;492(1):64–69. doi: 10.1016/0005-2795(77)90214-8. [DOI] [PubMed] [Google Scholar]
- Boyer T. D., Zakim D., Vessey D. A. Do the soluble glutathione S-transferases have direct access to membrane-bound substrates? Biochem Pharmacol. 1983 Jan 1;32(1):29–35. doi: 10.1016/0006-2952(83)90647-0. [DOI] [PubMed] [Google Scholar]
- Cannon J. B., Kuo F. S., Pasternack R. F., Wong N. M., Muller-Eberhard U. Kinetics of the interaction of hemin liposomes with heme binding proteins. Biochemistry. 1984 Jul 31;23(16):3715–3721. doi: 10.1021/bi00311a022. [DOI] [PubMed] [Google Scholar]
- Daniels C., Noy N., Zakim D. Rates of hydration of fatty acids bound to unilamellar vesicles of phosphatidylcholine or to albumin. Biochemistry. 1985 Jun 18;24(13):3286–3292. doi: 10.1021/bi00334a032. [DOI] [PubMed] [Google Scholar]
- Duvaldestin P., Mahu J. L., Preaux A. M., Berthelot P. Novobiocin-inhibition and magnesium-interaction of rat liver microsomal bilirubin UDP-glucuronosyltransferase. Biochem Pharmacol. 1976 Dec 1;25(23):2587–2592. doi: 10.1016/0006-2952(76)90513-x. [DOI] [PubMed] [Google Scholar]
- Engasser J. M., Flamm M., Horvath C. Hormone regulation of cellular metabolism: interplay of membrane transport and consecutive enzymic reaction. J Theor Biol. 1977 Aug 7;67(3):433–445. doi: 10.1016/0022-5193(77)90047-9. [DOI] [PubMed] [Google Scholar]
- Fischer E., Keleti T. Sigmoidal substrate saturation curves in Michaelis-Menten mechanism as an artefact. Acta Biochim Biophys Acad Sci Hung. 1975;10(3):221–227. [PubMed] [Google Scholar]
- Fournel S., Grégoire B., Magdalou J., Carre M. C., Lafaurie C., Siest G., Caubère P. Inhibition of bilirubin UDPglucuronosyltransferase activity by triphenylacetic acid and related compounds. Biochim Biophys Acta. 1986 Sep 4;883(2):190–196. doi: 10.1016/0304-4165(86)90308-9. [DOI] [PubMed] [Google Scholar]
- Gatt S., Bartfai T. Rate equations and simulation curves for enzymatic reactions which utilize lipids as substrates. I. Interaction of enzymes with the monomers and micelles of soluble, amphiphilic lipids. Biochim Biophys Acta. 1977 Jul 20;488(1):1–12. doi: 10.1016/0005-2760(77)90117-5. [DOI] [PubMed] [Google Scholar]
- Gatt S., Bartfai T. Rate equations and simulation curves for enzymatic reactions which utilize lipids as substrates. II. Effect of adsorption of the substrate or enzyme on the steady-state kinetics. Biochim Biophys Acta. 1977 Jul 20;488(1):13–24. doi: 10.1016/0005-2760(77)90118-7. [DOI] [PubMed] [Google Scholar]
- Gonzalez F. J. The molecular biology of cytochrome P450s. Pharmacol Rev. 1988 Dec;40(4):243–288. [PubMed] [Google Scholar]
- Hampl R., Kudová M., Stárka L. The effect of selective protein binding on the enzymatic formation of testosterone glucuronide. FEBS Lett. 1975 Apr 1;52(2):242–245. doi: 10.1016/0014-5793(75)80815-5. [DOI] [PubMed] [Google Scholar]
- Hasinoff B. B. The diffusion-controlled reaction kinetics of the binding of CO and O2 to myoglobin in glycerol-water mixtures of high viscosity. Arch Biochem Biophys. 1977 Sep;183(1):176–188. doi: 10.1016/0003-9861(77)90432-5. [DOI] [PubMed] [Google Scholar]
- Heirwegh K. P. Effects of binding of amphipathic compounds to carrier proteins on their enzymic biotransformation by membrane-bound enzymes. Biochem Soc Trans. 1984 Feb;12(1):11–13. doi: 10.1042/bst0120011. [DOI] [PubMed] [Google Scholar]
- Heirwegh K. P., Meuwissen J. A., Van den Steen P., De Smedt H. Modelling of chemical reactions catalysed by membrane-bound enzymes. Determination and significance of the kinetic constants. Biochim Biophys Acta. 1989 Apr 6;995(2):151–159. doi: 10.1016/0167-4838(89)90074-5. [DOI] [PubMed] [Google Scholar]
- Heirwegh K. P., Meuwissen J. A., Vermeir M., De Smedt H. Liposomes as carriers of poorly water-soluble substrates: linear modelling of membrane systems with catalytic or binding sites of different facedness. Significance of experimental membrane partition coefficients and of kinetic and equilibrium parameters. Biochem J. 1988 Aug 15;254(1):101–108. doi: 10.1042/bj2540101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keleti T., Welch G. R. The evolution of enzyme kinetic power. Biochem J. 1984 Oct 15;223(2):299–303. doi: 10.1042/bj2230299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ketelslegers J. M., Pirens G., Maghuin-Rogister G., Hennen G., Frère J. M. The choice of erroneous models of hormone-receptor interactions: a consequence of illegitimate utilization of Scatchard graphs. Biochem Pharmacol. 1984 Mar 1;33(5):707–710. doi: 10.1016/0006-2952(84)90450-7. [DOI] [PubMed] [Google Scholar]
- Klotz I. M. Numbers of receptor sites from Scatchard graphs: facts and fantasies. Science. 1982 Sep 24;217(4566):1247–1249. doi: 10.1126/science.6287580. [DOI] [PubMed] [Google Scholar]
- Kominami S., Itoh Y., Takemori S. Studies on the interaction of steroid substrates with adrenal microsomal cytochrome P-450 (P-450C21) in liposome membranes. J Biol Chem. 1986 Feb 15;261(5):2077–2083. [PubMed] [Google Scholar]
- Laduron P. M. Criteria for receptor sites in binding studies. Biochem Pharmacol. 1984 Mar 15;33(6):833–839. doi: 10.1016/0006-2952(84)90436-2. [DOI] [PubMed] [Google Scholar]
- Liau G., Ong D. E., Chytil F. Interaction of the retinol/cellular retinol-binding protein complex with isolated nuclei and nuclear components. J Cell Biol. 1981 Oct;91(1):63–68. doi: 10.1083/jcb.91.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu A. Y. Multiplicity of liver drug metabolizing enzymes. Drug Metab Rev. 1979;10(2):187–208. doi: 10.3109/03602537908997468. [DOI] [PubMed] [Google Scholar]
- Mendel C. M., Mendel D. B. 'Non-specific' binding. The problem, and a solution. Biochem J. 1985 May 15;228(1):269–272. doi: 10.1042/bj2280269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meunier J. C., Buc J., Navarro A., Ricard J. Regulatory behavior of monomeric enzymes. 2. A wheat-germ hexokinase as a mnemonical enzyme. Eur J Biochem. 1974 Nov 1;49(1):209–223. doi: 10.1111/j.1432-1033.1974.tb03826.x. [DOI] [PubMed] [Google Scholar]
- Nebert D. W., Gonzalez F. J. P450 genes: structure, evolution, and regulation. Annu Rev Biochem. 1987;56:945–993. doi: 10.1146/annurev.bi.56.070187.004501. [DOI] [PubMed] [Google Scholar]
- Noy N., Donnelly T. M., Zakim D. Physical-chemical model for the entry of water-insoluble compounds into cells. Studies of fatty acid uptake by the liver. Biochemistry. 1986 Apr 22;25(8):2013–2021. doi: 10.1021/bi00356a027. [DOI] [PubMed] [Google Scholar]
- Ohisalo J. J., Andersson S. M., Pispa J. P. Partial purification and properties of frog liver tyrosine aminotransferase. Biochem J. 1977 Jun 1;163(3):411–417. doi: 10.1042/bj1630411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okey A. B., Bondy G. P., Mason M. E., Nebert D. W., Forster-Gibson C. J., Muncan J., Dufresne M. J. Temperature-dependent cytosol-to-nucleus translocation of the Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in continuous cell culture lines. J Biol Chem. 1980 Dec 10;255(23):11415–11422. [PubMed] [Google Scholar]
- Parry G., Palmer D. N., Williams D. J. Ligand partitioning into membranes: its significance in determining Km and Ks values for cytochrome P-450 and other membrane bound receptors and enzymes. FEBS Lett. 1976 Aug 15;67(2):123–129. doi: 10.1016/0014-5793(76)80348-1. [DOI] [PubMed] [Google Scholar]
- Phillips M. C., Johnson W. J., Rothblat G. H. Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim Biophys Acta. 1987 Jun 24;906(2):223–276. doi: 10.1016/0304-4157(87)90013-x. [DOI] [PubMed] [Google Scholar]
- Powis G., Jansson I., Schenkman J. B. The effects of albumin upon the spectral changes and metabolism by the hepatic microsomal fraction. Arch Biochem Biophys. 1977 Feb;179(1):34–42. doi: 10.1016/0003-9861(77)90083-2. [DOI] [PubMed] [Google Scholar]
- Ragan C. I. The role of phospholipids in the reduction of ubiquinone analogues by the mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase complex. Biochem J. 1978 Jun 15;172(3):539–547. doi: 10.1042/bj1720539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose M. Y., Thompson R. A., Light W. R., Olson J. S. Heme transfer between phospholipid membranes and uptake by apohemoglobin. J Biol Chem. 1985 Jun 10;260(11):6632–6640. [PubMed] [Google Scholar]
- Scheel G., Acevedo E., Conzelmann E., Nehrkorn H., Sandhoff K. Model for the interaction of membrane-bound substrates and enzymes. Hydrolysis of ganglioside GD1a by sialidase of neuronal membranes isolated from calf brain. Eur J Biochem. 1982 Oct;127(2):245–253. doi: 10.1111/j.1432-1033.1982.tb06862.x. [DOI] [PubMed] [Google Scholar]
- Sorrentino D., Potter B. J., Berk P. D. From albumin to the cytoplasm: the hepatic uptake of organic anions. Prog Liver Dis. 1990;9:203–224. [PubMed] [Google Scholar]
- Sorrentino D., Robinson R. B., Kiang C. L., Berk P. D. At physiologic albumin/oleate concentrations oleate uptake by isolated hepatocytes, cardiac myocytes, and adipocytes is a saturable function of the unbound oleate concentration. Uptake kinetics are consistent with the conventional theory. J Clin Invest. 1989 Oct;84(4):1325–1333. doi: 10.1172/JCI114301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spector A. A., John K., Fletcher J. E. Binding of long-chain fatty acids to bovine serum albumin. J Lipid Res. 1969 Jan;10(1):56–67. [PubMed] [Google Scholar]
- Storer A. C., Cornish-Bowden A. Kinetic evidence for a 'mnemonical' mechanism for rat liver glucokinase. Biochem J. 1977 Jul 1;165(1):61–69. doi: 10.1042/bj1650061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tipping E., Ketterer B. The influence of soluble binding proteins on lipophile transport and metabolism in hepatocytes. Biochem J. 1981 May 1;195(2):441–452. doi: 10.1042/bj1950441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tukey R. H., Hannah R. R., Negishi M., Nebert D. W., Eisen H. J. The Ah locus: correlation of intranuclear appearance of inducer-receptor complex with induction of cytochrome P1-450 mRNA. Cell. 1982 Nov;31(1):275–284. doi: 10.1016/0092-8674(82)90427-5. [DOI] [PubMed] [Google Scholar]
- Vanstapel F., Blanckaert N. On the binding of bilirubin and its structural analogues to hepatic microsomal bilirubin UDPglucuronyltransferase. Biochemistry. 1987 Sep 22;26(19):6074–6082. doi: 10.1021/bi00393a020. [DOI] [PubMed] [Google Scholar]
- Vincent J. C., Thellier M. Theoretical analysis of the significance of whether or not enzymes or transport systems in structured media follow Michaelis-Menten kinetics. Biophys J. 1983 Jan;41(1):23–28. doi: 10.1016/S0006-3495(83)84401-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weisiger R., Gollan J., Ockner R. Receptor for albumin on the liver cell surface may mediate uptake of fatty acids and other albumin-bound substances. Science. 1981 Mar 6;211(4486):1048–1051. doi: 10.1126/science.6258226. [DOI] [PubMed] [Google Scholar]
- Whitmer D. I., Ziurys J. C., Gollan J. L. Hepatic microsomal glucuronidation of bilirubin in unilamellar liposomal membranes. Implications for intracellular transport of lipophilic substrates. J Biol Chem. 1984 Oct 10;259(19):11969–11975. [PubMed] [Google Scholar]
- Yost R. W., Harrison E. H., Ross A. C. Esterification by rat liver microsomes of retinol bound to cellular retinol-binding protein. J Biol Chem. 1988 Dec 15;263(35):18693–18701. [PubMed] [Google Scholar]
