Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Jun 1;284(Pt 2):551–555. doi: 10.1042/bj2840551

A thermostable NADH oxidase from anaerobic extreme thermophiles.

K Maeda 1, K Truscott 1, X L Liu 1, R K Scopes 1
PMCID: PMC1132673  PMID: 1599437

Abstract

A high-abundance NADH-oxidizing enzyme (NADH: acceptor oxidoreductase, EC 1.6.99.3) has been identified and isolated from a range of anaerobic extreme thermophiles, including strains of Clostridium thermohydrosulfuricum and Thermoanaerobium brockii. By use of a pseudo-affinity salt-promoted adsorbent, a nearly pure sample was obtained in one step; remaining impurities were separated by ion-exchange. The fully active purified enzyme contains FAD (two molecules per subunit of 75-78 kDa) and iron-sulphur, and is hexameric in its most active form. The reaction with oxygen is a one- or two-electron transfer to produce superoxide radical and H2O2; other acceptors include tetrazolium salts, dichlorophenol-indophenol, menadione and ferricyanide. The role of the enzyme is not clear; it was found not to be NAD:ferredoxin oxidoreductase, which is a major NADH-utilizing enzyme in these organisms.

Full text

PDF
551

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson T., Hammond P. M., Hartwell R. D., Hughes P., Scawen M. D., Sherwood R. F., Small D. A., Bruton C. J., Harvey M. J., Lowe C. R. Triazine-dye affinity; chromatography. Biochem Soc Trans. 1981 Aug;9(4):290–293. doi: 10.1042/bst0090290. [DOI] [PubMed] [Google Scholar]
  2. Baret A., Fert V., Aumaille J. Application of a long-term enhanced xanthine oxidase-induced luminescence in solid-phase immunoassays. Anal Biochem. 1990 May 15;187(1):20–26. doi: 10.1016/0003-2697(90)90411-2. [DOI] [PubMed] [Google Scholar]
  3. Blusson H., Petitdemange H., Gay R. A new, fast, and sensitive assay for NADH--ferredoxin oxidoreductase detection in clostridia. Anal Biochem. 1981 Jan 1;110(1):176–181. doi: 10.1016/0003-2697(81)90132-9. [DOI] [PubMed] [Google Scholar]
  4. Cocco D., Rinaldi A., Savini I., Cooper J. M., Bannister J. V. NADH oxidase from the extreme thermophile Thermus aquaticus YT-1. Purification and characterisation. Eur J Biochem. 1988 Jun 1;174(2):267–271. doi: 10.1111/j.1432-1033.1988.tb14093.x. [DOI] [PubMed] [Google Scholar]
  5. DOEG K. A., ZIEGLER D. M. Simplified methods for the estimation of iron in mitochondria and submitochondrial fractions. Arch Biochem Biophys. 1962 Apr;97:37–40. doi: 10.1016/0003-9861(62)90041-3. [DOI] [PubMed] [Google Scholar]
  6. DOLIN M. I. Oxidation of reduced diphosphopyridine nucleotide by Clostridium perfringens. I. Relation of peroxide to the overall reaction. J Bacteriol. 1959 Apr;77(4):383–392. doi: 10.1128/jb.77.4.383-392.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jungermann K., Thauer R. K., Leimenstoll G., Decker K. Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia. Biochim Biophys Acta. 1973 May 30;305(2):268–280. doi: 10.1016/0005-2728(73)90175-8. [DOI] [PubMed] [Google Scholar]
  8. Koike K., Kobayashi T., Ito S., Saitoh M. Purification and characterization of NADH oxidase from a strain of Leuconostoc mesenteroides. J Biochem. 1985 May;97(5):1279–1288. doi: 10.1093/oxfordjournals.jbchem.a135179. [DOI] [PubMed] [Google Scholar]
  9. Lamed R., Zeikus J. G. Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J Bacteriol. 1980 Nov;144(2):569–578. doi: 10.1128/jb.144.2.569-578.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  11. Morgan D. J., Moodley I., Cundell D. R., Sheinman B. D., Smart W., Davies R. J. Circulating histamine and neutrophil chemotactic activity during allergen-induced asthma: the effect of inhaled antihistamines and anti-allergic compounds. Clin Sci (Lond) 1985 Jul;69(1):63–69. doi: 10.1042/cs0690063. [DOI] [PubMed] [Google Scholar]
  12. Saeki Y., Nozaki M., Matsumoto K. Purification and properties of NADH oxidase from Bacillus megaterium. J Biochem. 1985 Dec;98(6):1433–1440. doi: 10.1093/oxfordjournals.jbchem.a135411. [DOI] [PubMed] [Google Scholar]
  13. Schmidt H. L., Stöcklein W., Danzer J., Kirch P., Limbach B. Isolation and properties of an H2O-forming NADH oxidase from Streptococcus faecalis. Eur J Biochem. 1986 Apr 1;156(1):149–155. doi: 10.1111/j.1432-1033.1986.tb09560.x. [DOI] [PubMed] [Google Scholar]
  14. Scopes R. K., Porath J. Differential salt-promoted chromatography for protein purification. Bioseparation. 1990;1(1):3–7. [PubMed] [Google Scholar]
  15. Scopes R. K. Strategies for enzyme isolation using dye-ligand and related adsorbents. J Chromatogr. 1986 Apr 11;376:131–140. doi: 10.1016/s0378-4347(00)80830-0. [DOI] [PubMed] [Google Scholar]
  16. Thurman R. G., Ley H. G., Scholz R. Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase. Eur J Biochem. 1972 Feb;25(3):420–430. doi: 10.1111/j.1432-1033.1972.tb01711.x. [DOI] [PubMed] [Google Scholar]
  17. Weintraub S. B., Frankel F. R. Identification of the T4rIIB gene product as a membrane protein. J Mol Biol. 1972 Oct 14;70(3):589–615. doi: 10.1016/0022-2836(72)90561-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES