Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Jun 1;284(Pt 2):557–564. doi: 10.1042/bj2840557

Formation of salivary-mucosal pellicle: the role of transglutaminase.

S D Bradway 1, E J Bergey 1, F A Scannapieco 1, N Ramasubbu 1, S Zawacki 1, M J Levine 1
PMCID: PMC1132674  PMID: 1376115

Abstract

The present investigation was carried out to identify salivary components of mucosal pellicles in vivo and explore further the mechanism of interaction between salivary molecules and buccal epithelial cells. By using specific antisera and immunoprotein blotting, high-(MG1) and low-(MG2) molecular-mass salivary mucins, amylase, salivary cystatins and proline-rich proteins were detected within mucosal pellicle in vivo. In addition, the data indicated that the mucins and proline-rich proteins could be cleaved into lower-molecular-mass products, whereas the proline-rich proteins could also be cross-linked into higher-molecular-mass complexes. The role of buccal epithelial cell transglutaminase in these interactions was further studied by utilizing purified iodinated amylase, neutral cystatin SN and acidic proline-rich proteins 1 and 3 (APRP1 and 3). After incubation with buccal epithelial cells in vitro 125I-labelled APRPs appeared to undergo a greater degree of cross-linking than 125I-labelled cystatin SN, as determined by SDS/PAGE/autoradiography. Amylase did not appear to be cross-linked at all. Recovery of 125I-labelled APRPs and 125I-labelled cystatin SN with epithelial cell envelopes after repeated extraction suggested that both molecules were cross-linked to envelope proteins, but that 125I-labelled APRPs were cross-linked to a greater degree than 125I-labelled cystatin SN. Cross-linking in buccal epithelial cell preparations was inhibited by an excess of methylamine hydrochloride, a transglutaminase substrate. In a further assessment of amylase, cystatin and APRPs as transglutaminase substrates, only APRP3 and a partially purified preparation of APRPs acted as an amine acceptor for the cross-linking of [14C]methylamine by purified transglutaminase, as determined by SDS/PAGE/fluorography. This reaction was completely inhibited by excess EDTA. The combined data from this study suggest that during mucosal pellicle formation multiple components of saliva adsorb to buccal epithelial cell surfaces, and that, within this group, selected components are enzymically cross-linked by an epithelial transglutaminase and/or proteolytically cleaved into smaller fragments.

Full text

PDF
557

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Hashimi I., Dickinson D. P., Levine M. J. Purification, molecular cloning, and sequencing of salivary cystatin SA-1. J Biol Chem. 1988 Jul 5;263(19):9381–9387. [PubMed] [Google Scholar]
  2. Al-Hashimi I., Levine M. J. Characterization of in vivo salivary-derived enamel pellicle. Arch Oral Biol. 1989;34(4):289–295. doi: 10.1016/0003-9969(89)90070-8. [DOI] [PubMed] [Google Scholar]
  3. Barsigian C., Fellin F. M., Jain A., Martinez J. Dissociation of fibrinogen and fibronectin binding from transglutaminase-mediated cross-linking at the hepatocyte surface. J Biol Chem. 1988 Oct 5;263(28):14015–14022. [PubMed] [Google Scholar]
  4. Bennick A., Cannon M., Madapallimattam G. The nature of the hydroxyapatite-binding site in salivary acidic proline-rich proteins. Biochem J. 1979 Oct 1;183(1):115–126. doi: 10.1042/bj1830115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennick A., Cannon M. Quantitative study of the interaction of salivary acidic proline-rich proteins with hydroxyapatite. Caries Res. 1978;12(3):159–169. doi: 10.1159/000260326. [DOI] [PubMed] [Google Scholar]
  6. Bennick A., Chau G., Goodlin R., Abrams S., Tustian D., Madapallimattam G. The role of human salivary acidic proline-rich proteins in the formation of acquired dental pellicle in vivo and their fate after adsorption to the human enamel surface. Arch Oral Biol. 1983;28(1):19–27. doi: 10.1016/0003-9969(83)90022-5. [DOI] [PubMed] [Google Scholar]
  7. Bennick A. Chemical and physical characteristics of a phosphoprotein from human parotid saliva. Biochem J. 1975 Mar;145(3):557–567. doi: 10.1042/bj1450557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bennick A. Structural and genetic aspects of proline-rich proteins. J Dent Res. 1987 Feb;66(2):457–461. doi: 10.1177/00220345870660021201. [DOI] [PubMed] [Google Scholar]
  9. Bowness J. M., Folk J. E., Timpl R. Identification of a substrate site for liver transglutaminase on the aminopropeptide of type III collagen. J Biol Chem. 1987 Jan 25;262(3):1022–1024. [PubMed] [Google Scholar]
  10. Bradway S. D., Bergey E. J., Jones P. C., Levine M. J. Oral mucosal pellicle. Adsorption and transpeptidation of salivary components to buccal epithelial cells. Biochem J. 1989 Aug 1;261(3):887–896. doi: 10.1042/bj2610887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Braunlin W. H., Vogel H. J., Drakenberg T., Bennick A. A calcium-43 NMR study of calcium binding to an acidic proline-rich phosphoprotein from human saliva. Biochemistry. 1986 Feb 11;25(3):584–589. doi: 10.1021/bi00351a011. [DOI] [PubMed] [Google Scholar]
  12. Cohen R. E., Aguirre A., Neiders M. E., Levine M. J., Jones P. C., Reddy M. S., Haar J. G. Immunochemistry of high molecular-weight human salivary mucin. Arch Oral Biol. 1990;35(2):127–136. doi: 10.1016/0003-9969(90)90174-9. [DOI] [PubMed] [Google Scholar]
  13. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  14. Dickson R. B., Willingham M. C., Pastan I. Binding and internalization of 125I-alpha 2-macroglobulin by cultured fibroblasts. J Biol Chem. 1981 Apr 10;256(7):3454–3459. [PubMed] [Google Scholar]
  15. Douglas C. W., Russell R. R. The adsorption of human salivary components to strains of the bacterium Streptococcus mutans. Arch Oral Biol. 1984;29(10):751–757. doi: 10.1016/0003-9969(84)90002-5. [DOI] [PubMed] [Google Scholar]
  16. Edwards P. A. Is mucus a selective barrier to macromolecules? Br Med Bull. 1978 Jan;34(1):55–56. doi: 10.1093/oxfordjournals.bmb.a071459. [DOI] [PubMed] [Google Scholar]
  17. Ellen R. P., Fillery E. D., Chan K. H., Grove D. A. Sialidase-enhanced lectin-like mechanism for Actinomyces viscosus and Actinomyces naeslundii hemagglutination. Infect Immun. 1980 Feb;27(2):335–343. doi: 10.1128/iai.27.2.335-343.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ericson T., Magnusson I. Affinity for hydroxyapatite of salivary substances inducing aggregation of oral streptococci. Caries Res. 1976;10(1):8–18. doi: 10.1159/000260185. [DOI] [PubMed] [Google Scholar]
  19. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gibbons R. J. Bacterial adhesion to oral tissues: a model for infectious diseases. J Dent Res. 1989 May;68(5):750–760. doi: 10.1177/00220345890680050101. [DOI] [PubMed] [Google Scholar]
  21. Gibbons R. J., Etherden I., Moreno E. C. Association of neuraminidase-sensitive receptors and putative hydrophobic interactions with high-affinity binding sites for Streptococcus sanguis C5 in salivary pellicles. Infect Immun. 1983 Dec;42(3):1006–1012. doi: 10.1128/iai.42.3.1006-1012.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gibbons R. J., Hay D. I., Cisar J. O., Clark W. B. Adsorbed salivary proline-rich protein 1 and statherin: receptors for type 1 fimbriae of Actinomyces viscosus T14V-J1 on apatitic surfaces. Infect Immun. 1988 Nov;56(11):2990–2993. doi: 10.1128/iai.56.11.2990-2993.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gibbons R. J., van Houte J. Selective bacterial adherence to oral epithelial surfaces and its role as an ecological determinant. Infect Immun. 1971 Apr;3(4):567–573. doi: 10.1128/iai.3.4.567-573.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hatton M. N., Loomis R. E., Levine M. J., Tabak L. A. Masticatory lubrication. The role of carbohydrate in the lubricating property of a salivary glycoprotein-albumin complex. Biochem J. 1985 Sep 15;230(3):817–820. doi: 10.1042/bj2300817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hay D. I., Bennick A., Schlesinger D. H., Minaguchi K., Madapallimattam G., Schluckebier S. K. The primary structures of six human salivary acidic proline-rich proteins (PRP-1, PRP-2, PRP-3, PRP-4, PIF-s and PIF-f). Biochem J. 1988 Oct 1;255(1):15–21. doi: 10.1042/bj2550015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hay D. I. The interaction of human parotid salivary proteins with hydroxyapatite. Arch Oral Biol. 1973 Dec;18(12):1517–1529. doi: 10.1016/0003-9969(73)90127-1. [DOI] [PubMed] [Google Scholar]
  27. Hill H. D., Straka J. G. Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. Anal Biochem. 1988 Apr;170(1):203–208. doi: 10.1016/0003-2697(88)90109-1. [DOI] [PubMed] [Google Scholar]
  28. Hillman J. D., Van Houte J., Gibbons R. J. Sorption of bacteria to human enamel powder. Arch Oral Biol. 1970 Sep;15(9):899–903. doi: 10.1016/0003-9969(70)90163-9. [DOI] [PubMed] [Google Scholar]
  29. Juriaanse A. C., Booij M., Arends J., ten Bosch J. J. The adsorption in vitro of purified salivary proteins on bovine dental enamel. Arch Oral Biol. 1981;26(2):91–96. doi: 10.1016/0003-9969(81)90076-5. [DOI] [PubMed] [Google Scholar]
  30. Kashket S., Donaldson C. G. Saliva-induced aggregation of oral streptococci. J Bacteriol. 1972 Dec;112(3):1127–1133. doi: 10.1128/jb.112.3.1127-1133.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kraus F. W., Orstavik D., Hurst D. C., Cook C. H. The acquired pellicle: variability and subject-dependence of specific proteins. J Oral Pathol. 1973;2(3):165–173. doi: 10.1111/j.1600-0714.1973.tb01680.x. [DOI] [PubMed] [Google Scholar]
  32. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  33. Levine M. J., Reddy M. S., Tabak L. A., Loomis R. E., Bergey E. J., Jones P. C., Cohen R. E., Stinson M. W., Al-Hashimi I. Structural aspects of salivary glycoproteins. J Dent Res. 1987 Feb;66(2):436–441. doi: 10.1177/00220345870660020901. [DOI] [PubMed] [Google Scholar]
  34. Mandel I. D. The functions of saliva. J Dent Res. 1987 Feb;66(Spec No):623–627. doi: 10.1177/00220345870660S203. [DOI] [PubMed] [Google Scholar]
  35. Martinet N., Kim H. C., Girard J. E., Nigra T. P., Strong D. H., Chung S. I., Folk J. E. Epidermal and hair follicle transglutaminases. Partial characterization of soluble enzymes in newborn mouse skin. J Biol Chem. 1988 Mar 25;263(9):4236–4241. [PubMed] [Google Scholar]
  36. Mayhall C. W. Concerning the composition and source of the acquired enamel pellicle of human teeth. Arch Oral Biol. 1970 Dec;15(12):1327–1341. doi: 10.1016/0003-9969(70)90021-x. [DOI] [PubMed] [Google Scholar]
  37. McBride B. C., Gisslow M. T. Role of sialic acid in saliva-induced aggregation of Streptococcus sanguis. Infect Immun. 1977 Oct;18(1):35–40. doi: 10.1128/iai.18.1.35-40.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Minaguchi K., Madapallimattam G., Bennick A. The presence and origin of phosphopeptides in human saliva. Biochem J. 1988 Feb 15;250(1):171–177. doi: 10.1042/bj2500171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Moreno E. C., Zahradnik R. T. Demineralization and remineralization of dental enamel. J Dent Res. 1979 Mar;58(SPEC):896–903. doi: 10.1177/00220345790580024301. [DOI] [PubMed] [Google Scholar]
  40. Morris E. J., McBride B. C. Adherence of Streptococcus sanguis to saliva-coated hydroxyapatite: evidence for two binding sites. Infect Immun. 1984 Feb;43(2):656–663. doi: 10.1128/iai.43.2.656-663.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Murray P. A., Levine M. J., Tabak L. A., Reddy M. S. Neuraminidase activity: a biochemical marker to distinguish Streptococcus mitis from Streptococcus sanguis. J Dent Res. 1984 Feb;63(2):111–113. doi: 10.1177/00220345840630020201. [DOI] [PubMed] [Google Scholar]
  42. Negi M., Colbert M. C., Goldsmith L. A. High-molecular-weight human epidermal transglutaminase. J Invest Dermatol. 1985 Jul;85(1):75–78. doi: 10.1111/1523-1747.ep12275357. [DOI] [PubMed] [Google Scholar]
  43. Orstavik D., Kraus F. W. The acquired pellicle: immunofluorescent demonstration of specific proteins. J Oral Pathol. 1973;2(1):68–76. doi: 10.1111/j.1600-0714.1973.tb01675.x. [DOI] [PubMed] [Google Scholar]
  44. Peterson L. L., Buxman M. M. Rat hair follicle and epidermal transglutaminases. Biochemical and immunochemical isoenzymes. Biochim Biophys Acta. 1981 Jan 15;657(1):268–276. doi: 10.1016/0005-2744(81)90150-9. [DOI] [PubMed] [Google Scholar]
  45. Piacentini M., Farrace M. G., Imparato M., Piredda L., Autuori F. Polyamine-dependent post-translational modification of proteins in differentiating mouse epidermal cells. J Invest Dermatol. 1990 May;94(5):694–699. doi: 10.1111/1523-1747.ep12876271. [DOI] [PubMed] [Google Scholar]
  46. Reinholdt J., Kilian M. Interference of IgA protease with the effect of secretory IgA on adherence of oral streptococci to saliva-coated hydroxyapatite. J Dent Res. 1987 Feb;66(2):492–497. doi: 10.1177/00220345870660021801. [DOI] [PubMed] [Google Scholar]
  47. Saitoh E., Isemura S., Sanada K. Complete amino acid sequence of a basic proline-rich peptide, P-D, from human parotid saliva. J Biochem. 1983 Feb;93(2):495–502. doi: 10.1093/oxfordjournals.jbchem.a134204. [DOI] [PubMed] [Google Scholar]
  48. Scannapieco F. A., Bergey E. J., Reddy M. S., Levine M. J. Characterization of salivary alpha-amylase binding to Streptococcus sanguis. Infect Immun. 1989 Sep;57(9):2853–2863. doi: 10.1128/iai.57.9.2853-2863.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Schrode J., Folk J. E. Transglutaminase-catalyzed cross-linking through diamines and polyamines. J Biol Chem. 1978 Jul 25;253(14):4837–4840. [PubMed] [Google Scholar]
  50. Shomers J. P., Tabak L. A., Levine M. J., Mandel I. D., Ellison S. A. The isolation of a family of cysteine-containing phosphoproteins from human submandibular-sublingual saliva. J Dent Res. 1982 Aug;61(8):973–977. doi: 10.1177/00220345820610081101. [DOI] [PubMed] [Google Scholar]
  51. Simon M., Green H. Enzymatic cross-linking of involucrin and other proteins by keratinocyte particulates in vitro. Cell. 1985 Mar;40(3):677–683. doi: 10.1016/0092-8674(85)90216-8. [DOI] [PubMed] [Google Scholar]
  52. Simon M., Green H. Participation of membrane-associated proteins in the formation of the cross-linked envelope of the keratinocyte. Cell. 1984 Apr;36(4):827–834. doi: 10.1016/0092-8674(84)90032-1. [DOI] [PubMed] [Google Scholar]
  53. Simon M., Green H. The glutamine residues reactive in transglutaminase-catalyzed cross-linking of involucrin. J Biol Chem. 1988 Dec 5;263(34):18093–18098. [PubMed] [Google Scholar]
  54. Stinson M. W., Levine M. J., Cavese J. M., Prakobphol A., Murray P. A., Tabak L. A., Reddy M. S. Adherence of Streptococcus sanguis to salivary mucin bound to glass. J Dent Res. 1982 Dec;61(12):1390–1393. doi: 10.1177/00220345820610120101. [DOI] [PubMed] [Google Scholar]
  55. Sönju T., Rölla G. Chemical analysis of the acquired pellicle formed in two hours on cleaned human teeth in vivo. Rate of formation and amino acid analysis. Caries Res. 1973;7(1):30–38. doi: 10.1159/000259822. [DOI] [PubMed] [Google Scholar]
  56. Ta B. M., Gallagher G. T., Chakravarty R., Rice R. H. Keratinocyte transglutaminase in human skin and oral mucosa: cytoplasmic localization and uncoupling of differentiation markers. J Cell Sci. 1990 Apr;95(Pt 4):631–638. doi: 10.1242/jcs.95.4.631. [DOI] [PubMed] [Google Scholar]
  57. Tabak L. A., Levine M. J., Mandel I. D., Ellison S. A. Role of salivary mucins in the protection of the oral cavity. J Oral Pathol. 1982 Feb;11(1):1–17. doi: 10.1111/j.1600-0714.1982.tb00138.x. [DOI] [PubMed] [Google Scholar]
  58. Thacher S. M., Rice R. H. Keratinocyte-specific transglutaminase of cultured human epidermal cells: relation to cross-linked envelope formation and terminal differentiation. Cell. 1985 Mar;40(3):685–695. doi: 10.1016/0092-8674(85)90217-x. [DOI] [PubMed] [Google Scholar]
  59. Williams-Ashman H. G., Canellakis Z. N. Transglutaminase-mediated covalent attachment of polyamines to proteins: mechanisms and potential physiological significance. Physiol Chem Phys. 1980;12(5):457–472. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES