Abstract
We investigated whether highly purified preparations of basal (fetal-facing) membrane isolated from normal term human placentas possess Na(+)-H+ exchanger activity. Uptake of Na+ into basal membrane vesicles was stimulated many-fold by an outwardly directed H+ gradient. This H(+)-gradient-dependent uptake was inhibitable by amiloride and its analogues. Na+ uptake in these vesicles did not occur via a Na+ channel, as it was not influenced by changes in membrane potential and, in addition, was inhibited by benzamil only at high micromolar concentrations. The results indicate that the human placental basal membrane possesses Na(+)-H+ exchanger activity. We then studied whether this exchanger is similar to or distinct from the Na(+)-H+ exchanger described in brush border (maternal-facing) membrane preparations. For this purpose, we compared the pharmacological characteristics of the basal membrane Na(+)-H+ exchanger with those of the brush border membrane Na(+)-H+ exchanger. The basal membrane exchanger was about 20-fold less sensitive to inhibition by amiloride and about 70-fold less sensitive to inhibition by dimethylamiloride than was the brush border membrane exchanger. The exchanger activity in both membrane preparations was inhibitable by clonidine and cimetidine, but the inhibition patterns with these compounds were markedly different between basal and brush border membrane preparations. These data demonstrate that the basal membrane Na(+)-H+ exchanger is distinct from the brush border membrane Na(+)-H+ exchanger. The pharmacological profiles of these exchangers indicate that the human placental brush border membrane possesses the housekeeping or non-epithelial type Na(+)-H+ exchanger (NHE-1), whereas the basal membrane possesses the epithelial or apical type Na(+)-H+ exchanger (NHE-2).
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balkovetz D. F., Leibach F. H., Mahesh V. B., Devoe L. D., Cragoe E. J., Jr, Ganapathy V. Na+-H+ exchanger of human placental brush-border membrane: identification and characterization. Am J Physiol. 1986 Dec;251(6 Pt 1):C852–C860. doi: 10.1152/ajpcell.1986.251.6.C852. [DOI] [PubMed] [Google Scholar]
- Cantiello H. F., Lanier S. M. Alpha 2-adrenergic receptors and the Na+/H+ exchanger in the intestinal epithelial cell line, HT-29. J Biol Chem. 1989 Sep 25;264(27):16000–16007. [PubMed] [Google Scholar]
- Casavola V., Helmle-Kolb C., Murer H. Separate regulatory control of apical and basolateral Na+/H+ exchange in renal epithelial cells. Biochem Biophys Res Commun. 1989 Dec 15;165(2):833–837. doi: 10.1016/s0006-291x(89)80041-5. [DOI] [PubMed] [Google Scholar]
- Chipperfield A. R., Langridge-Smith J. E., Steele L. W. Sodium entry into human placental microvillous (maternal) plasma membrane vesicles. Q J Exp Physiol. 1988 May;73(3):399–411. doi: 10.1113/expphysiol.1988.sp003156. [DOI] [PubMed] [Google Scholar]
- Frelin C., Vigne P., Ladoux A., Lazdunski M. The regulation of the intracellular pH in cells from vertebrates. Eur J Biochem. 1988 May 16;174(1):3–14. doi: 10.1111/j.1432-1033.1988.tb14055.x. [DOI] [PubMed] [Google Scholar]
- Furesz T. C., Moe A. J., Smith C. H. Two cationic amino acid transport systems in human placental basal plasma membranes. Am J Physiol. 1991 Aug;261(2 Pt 1):C246–C252. doi: 10.1152/ajpcell.1991.261.2.C246. [DOI] [PubMed] [Google Scholar]
- Ganapathy M. E., Leibach F. H., Mahesh V. B., Devoe L. D., Ganapathy V. Interaction of clonidine with human placental Na+ -H+ exchanger. Biochem Pharmacol. 1986 Nov 15;35(22):3989–3994. doi: 10.1016/0006-2952(86)90016-x. [DOI] [PubMed] [Google Scholar]
- Ganapathy M. E., Mahesh V. B., Devoe L. D., Leibach F. H., Ganapathy V. Dipeptide transport in brush-border membrane vesicles isolated from normal term human placenta. Am J Obstet Gynecol. 1985 Sep 1;153(1):83–86. doi: 10.1016/0002-9378(85)90600-3. [DOI] [PubMed] [Google Scholar]
- Ganapathy V., Balkovetz D. F., Ganapathy M. E., Mahesh V. B., Devoe L. D., Leibach F. H. Evidence for histidyl and carboxy groups at the active site of the human placental Na+-H+ exchanger. Biochem J. 1987 Jul 15;245(2):473–477. doi: 10.1042/bj2450473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ganapathy V., Balkovetz D. F., Miyamoto Y., Ganapathy M. E., Mahesh V. B., Devoe L. D., Leibach F. H. Inhibition of human placental Na+-H+ exchanger by cimetidine. J Pharmacol Exp Ther. 1986 Oct;239(1):192–197. [PubMed] [Google Scholar]
- Ganapathy V., Mendicino J. F., Leibach F. H. Transport of glycyl-L-proline into intestinal and renal brush border vesicles from rabbit. J Biol Chem. 1981 Jan 10;256(1):118–124. [PubMed] [Google Scholar]
- Glazier J. D., Jones C. J., Sibley C. P. Purification and Na+ uptake by human placental microvillus membrane vesicles prepared by three different methods. Biochim Biophys Acta. 1988 Nov 22;945(2):127–134. doi: 10.1016/0005-2736(88)90475-0. [DOI] [PubMed] [Google Scholar]
- Grinstein S., Rothstein A. Mechanisms of regulation of the Na+/H+ exchanger. J Membr Biol. 1986;90(1):1–12. doi: 10.1007/BF01869680. [DOI] [PubMed] [Google Scholar]
- Grinstein S., Rotin D., Mason M. J. Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochim Biophys Acta. 1989 Jan 18;988(1):73–97. doi: 10.1016/0304-4157(89)90004-x. [DOI] [PubMed] [Google Scholar]
- Haggerty J. G., Agarwal N., Reilly R. F., Adelberg E. A., Slayman C. W. Pharmacologically different Na/H antiporters on the apical and basolateral surfaces of cultured porcine kidney cells (LLC-PK1). Proc Natl Acad Sci U S A. 1988 Sep;85(18):6797–6801. doi: 10.1073/pnas.85.18.6797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoeltzli S. D., Kelley L. K., Moe A. J., Smith C. H. Anionic amino acid transport systems in isolated basal plasma membrane of human placenta. Am J Physiol. 1990 Jul;259(1 Pt 1):C47–C55. doi: 10.1152/ajpcell.1990.259.1.C47. [DOI] [PubMed] [Google Scholar]
- Hoeltzli S. D., Smith C. H. Alanine transport systems in isolated basal plasma membrane of human placenta. Am J Physiol. 1989 Mar;256(3 Pt 1):C630–C637. doi: 10.1152/ajpcell.1989.256.3.C630. [DOI] [PubMed] [Google Scholar]
- Illsley N. P., Jacobs M. M. Control of the sodium-proton antiporter in human placental microvillous membranes by transport substrates. Biochim Biophys Acta. 1990 Nov 16;1029(2):227–234. doi: 10.1016/0005-2736(90)90158-k. [DOI] [PubMed] [Google Scholar]
- Kelley L. K., Smith C. H., King B. F. Isolation and partial characterization of the basal cell membrane of human placental trophoblast. Biochim Biophys Acta. 1983 Sep 21;734(1):91–98. doi: 10.1016/0005-2736(83)90079-2. [DOI] [PubMed] [Google Scholar]
- Kinsella J. L., Aronson P. S. Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol. 1980 Jun;238(6):F461–F469. doi: 10.1152/ajprenal.1980.238.6.F461. [DOI] [PubMed] [Google Scholar]
- Kleyman T. R., Cragoe E. J., Jr Amiloride and its analogs as tools in the study of ion transport. J Membr Biol. 1988 Oct;105(1):1–21. doi: 10.1007/BF01871102. [DOI] [PubMed] [Google Scholar]
- Knickelbein R. G., Aronson P. S., Dobbins J. W. Characterization of Na(+)-H+ exchangers on villus cells in rabbit ileum. Am J Physiol. 1990 Nov;259(5 Pt 1):G802–G806. doi: 10.1152/ajpgi.1990.259.5.G802. [DOI] [PubMed] [Google Scholar]
- Kulanthaivel P., Leibach F. H., Mahesh V. B., Cragoe E. J., Jr, Ganapathy V. The Na(+)-H+ exchanger of the placental brush-border membrane is pharmacologically distinct from that of the renal brush-border membrane. J Biol Chem. 1990 Jan 25;265(3):1249–1252. [PubMed] [Google Scholar]
- Mahnensmith R. L., Aronson P. S. The plasma membrane sodium-hydrogen exchanger and its role in physiological and pathophysiological processes. Circ Res. 1985 Jun;56(6):773–788. doi: 10.1161/01.res.56.6.773. [DOI] [PubMed] [Google Scholar]
- Miyamoto Y., Balkovetz D. F., Ganapathy V., Iwatsubo T., Hanano M., Leibach F. H. Effects of phenothiazines on the Na+-H+ exchanger of the brush-border membrane from the proximal small intestine of the rabbit. J Pharmacol Exp Ther. 1988 Jun;245(3):823–828. [PubMed] [Google Scholar]
- Montrose M. H., Friedrich T., Murer H. Measurements of intracellular pH in single LLC-PK1 cells: recovery from an acid load via basolateral Na+/H+ exchange. J Membr Biol. 1987;97(1):63–78. doi: 10.1007/BF01869615. [DOI] [PubMed] [Google Scholar]
- Ramamoorthy S., Tiruppathi C., Nair C. N., Mahesh V. B., Leibach F. H., Ganapathy V. Relative sensitivity to inhibition by cimetidine and clonidine differentiates between the two types of Na(+)-H+ exchangers in cultured cells. Biochem J. 1991 Dec 1;280(Pt 2):317–322. doi: 10.1042/bj2800317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seifter J. L., Aronson P. S. Properties and physiologic roles of the plasma membrane sodium-hydrogen exchanger. J Clin Invest. 1986 Oct;78(4):859–864. doi: 10.1172/JCI112671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warnock D. G., Yang W. C., Huang Z. Q., Cragoe E. J., Jr Interactions of chloride and amiloride with the renal Na+/H/ antiporter. J Biol Chem. 1988 May 25;263(15):7216–7221. [PubMed] [Google Scholar]