Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 May 15;284(Pt 1):67–74. doi: 10.1042/bj2840067

ATP-dependent bile-salt transport in canalicular rat liver plasma-membrane vesicles.

B Stieger 1, B O'Neill 1, P J Meier 1
PMCID: PMC1132698  PMID: 1599411

Abstract

The present study identifies and characterizes a novel ATP-dependent bile-salt transport system in isolated canalicular rat liver plasma-membrane (cLPM) vesicles. ATP (1-5 mM) stimulated taurocholate uptake into cLPM vesicles between 6- and 8-fold above equilibrium uptake values (overshoot) and above values for incubations in the absence of ATP. The ATP-dependent portion of taurocholate uptake was 2-fold higher in the presence of equilibrated KNO3 as compared with potassium gluconate, indicating that the stimulatory effect of ATP was not due to the generation of an intravesicular positive membrane potential. Saturation kinetics revealed a very high affinity (Km approximately 2.1 microM) of the system for taurocholate. The system could only minimally be stimulated by nucleotides other than ATP. Furthermore, it was preferentially inhibited by conjugated univalent bile salts. Further strong inhibitory effects were observed with valinomycin, oligomycin, 4,4'-di-isothiocyano-2,2'-stilbene disulphonate, sulphobromophthalein, leukotriene C4 and N-ethylmaleimide, whereas nigericin, vanadate, GSH, GSSG and daunomycin exerted only weak inhibitory effects or none at all. These results indicate the presence of a high-affinity primary ATP-dependent bile-salt transport system in cLPM vesicles. This transport system might be regulated in vivo by the number of carriers present at the perspective transport site(s), which, in addition to the canalicular membrane, might also include pericanalicular membrane vesicles.

Full text

PDF
67

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi Y., Kobayashi H., Kurumi Y., Shouji M., Kitano M., Yamamoto T. ATP-dependent taurocholate transport by rat liver canalicular membrane vesicles. Hepatology. 1991 Oct;14(4 Pt 1):655–659. doi: 10.1016/0270-9139(91)90053-x. [DOI] [PubMed] [Google Scholar]
  2. Awasthi Y. C., Singhal S. S., Gupta S., Ahmad H., Zimniak P., Radominska A., Lester R., Sharma R. Purification and characterization of an ATPase from human liver which catalyzes ATP hydrolysis in the presence of the conjugates of bilirubin bile acids and glutathione. Biochem Biophys Res Commun. 1991 Mar 29;175(3):1090–1096. doi: 10.1016/0006-291x(91)91677-5. [DOI] [PubMed] [Google Scholar]
  3. Beeler T. J., Farmen R. H., Martonosi A. N. The mechanism of voltage-sensitive dye responses on sarcoplasmic reticulum. J Membr Biol. 1981;62(1-2):113–137. doi: 10.1007/BF01870205. [DOI] [PubMed] [Google Scholar]
  4. Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
  5. Cidon S., Sihra T. S. Characterization of a H+-ATPase in rat brain synaptic vesicles. Coupling to L-glutamate transport. J Biol Chem. 1989 May 15;264(14):8281–8288. [PubMed] [Google Scholar]
  6. Coleman R. Biochemistry of bile secretion. Biochem J. 1987 Jun 1;244(2):249–261. doi: 10.1042/bj2440249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forgac M. Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev. 1989 Jul;69(3):765–796. doi: 10.1152/physrev.1989.69.3.765. [DOI] [PubMed] [Google Scholar]
  8. Frimmer M., Ziegler K. The transport of bile acids in liver cells. Biochim Biophys Acta. 1988 Feb 24;947(1):75–99. doi: 10.1016/0304-4157(88)90020-2. [DOI] [PubMed] [Google Scholar]
  9. Gewirtz D. A., Randolph J. K., Goldman I. D. Induction of taurocholate release from isolated rat hepatocytes in suspension by alpha-adrenergic agents and vasopressin: implications for control of bile salt secretion. Hepatology. 1984 Mar-Apr;4(2):205–212. doi: 10.1002/hep.1840040207. [DOI] [PubMed] [Google Scholar]
  10. Hagenbuch B., Stieger B., Foguet M., Lübbert H., Meier P. J. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10629–10633. doi: 10.1073/pnas.88.23.10629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hardison W. G., Hatoff D. E., Miyai K., Weiner R. G. Nature of bile acid maximum secretory rate in the rat. Am J Physiol. 1981 Oct;241(4):G337–G343. doi: 10.1152/ajpgi.1981.241.4.G337. [DOI] [PubMed] [Google Scholar]
  12. Inoue M., Kinne R., Tran T., Arias I. M. Taurocholate transport by rat liver canalicular membrane vesicles. Evidence for the presence of an Na+-independent transport system. J Clin Invest. 1984 Mar;73(3):659–663. doi: 10.1172/JCI111257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ishikawa T., Müller M., Klünemann C., Schaub T., Keppler D. ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular membrane. Role of the ATP-dependent transport system for glutathione S-conjugates. J Biol Chem. 1990 Nov 5;265(31):19279–19286. [PubMed] [Google Scholar]
  14. Johnson R. G., Jr Accumulation of biological amines into chromaffin granules: a model for hormone and neurotransmitter transport. Physiol Rev. 1988 Jan;68(1):232–307. doi: 10.1152/physrev.1988.68.1.232. [DOI] [PubMed] [Google Scholar]
  15. Kamimoto Y., Gatmaitan Z., Hsu J., Arias I. M. The function of Gp170, the multidrug resistance gene product, in rat liver canalicular membrane vesicles. J Biol Chem. 1989 Jul 15;264(20):11693–11698. [PubMed] [Google Scholar]
  16. Kitamura T., Jansen P., Hardenbrook C., Kamimoto Y., Gatmaitan Z., Arias I. M. Defective ATP-dependent bile canalicular transport of organic anions in mutant (TR-) rats with conjugated hyperbilirubinemia. Proc Natl Acad Sci U S A. 1990 May;87(9):3557–3561. doi: 10.1073/pnas.87.9.3557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Klos C., Paumgartner G., Reichen J. Cation-anion gap and choleretic properties of rat bile. Am J Physiol. 1979 Apr;236(4):E434–E440. doi: 10.1152/ajpendo.1979.236.4.E434. [DOI] [PubMed] [Google Scholar]
  18. Kobayashi K., Komatsu S., Nishi T., Hara H., Hayashi K. ATP-dependent transport for glucuronides in canalicular plasma membrane vesicles. Biochem Biophys Res Commun. 1991 Apr 30;176(2):622–626. doi: 10.1016/s0006-291x(05)80229-3. [DOI] [PubMed] [Google Scholar]
  19. Kobayashi K., Sogame Y., Hara H., Hayashi K. Mechanism of glutathione S-conjugate transport in canalicular and basolateral rat liver plasma membranes. J Biol Chem. 1990 May 15;265(14):7737–7741. [PubMed] [Google Scholar]
  20. Kuhn W. F., Gewirtz D. A. Stimulation of taurocholate and glycocholate efflux from the rat hepatocyte by arginine vasopressin. Am J Physiol. 1988 May;254(5 Pt 1):G732–G740. doi: 10.1152/ajpgi.1988.254.5.G732. [DOI] [PubMed] [Google Scholar]
  21. Lin S. H., Guidotti G. Cloning and expression of a cDNA coding for a rat liver plasma membrane ecto-ATPase. The primary structure of the ecto-ATPase is similar to that of the human biliary glycoprotein I. J Biol Chem. 1989 Aug 25;264(24):14408–14414. [PubMed] [Google Scholar]
  22. Meier P. J., Boyer J. L. Preparation of basolateral (sinusoidal) and canalicular plasma membrane vesicles for the study of hepatic transport processes. Methods Enzymol. 1990;192:534–545. doi: 10.1016/0076-6879(90)92092-r. [DOI] [PubMed] [Google Scholar]
  23. Meier P. J., Meier-Abt A. S., Boyer J. L. Properties of the canalicular bile acid transport system in rat liver. Biochem J. 1987 Mar 1;242(2):465–469. doi: 10.1042/bj2420465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meier P. J., St Meier-Abt A., Barrett C., Boyer J. L. Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. Evidence for an electrogenic canalicular organic anion carrier. J Biol Chem. 1984 Aug 25;259(16):10614–10622. [PubMed] [Google Scholar]
  25. Meier P. J., Sztul E. S., Reuben A., Boyer J. L. Structural and functional polarity of canalicular and basolateral plasma membrane vesicles isolated in high yield from rat liver. J Cell Biol. 1984 Mar;98(3):991–1000. doi: 10.1083/jcb.98.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Meier P. J. The bile salt secretory polarity of hepatocytes. J Hepatol. 1989 Jul;9(1):124–129. doi: 10.1016/0168-8278(89)90085-8. [DOI] [PubMed] [Google Scholar]
  27. Meier P. J. Transport polarity of hepatocytes. Semin Liver Dis. 1988 Nov;8(4):293–307. doi: 10.1055/s-2008-1040551. [DOI] [PubMed] [Google Scholar]
  28. Moriyama Y., Futai M. H(+)-ATPase, a primary pump for accumulation of neurotransmitters, is a major constituent of brain synaptic vesicles. Biochem Biophys Res Commun. 1990 Nov 30;173(1):443–448. doi: 10.1016/s0006-291x(05)81078-2. [DOI] [PubMed] [Google Scholar]
  29. Moriyama Y., Nelson N. Lysosomal H+-translocating ATPase has a similar subunit structure to chromaffin granule H+-ATPase complex. Biochim Biophys Acta. 1989 Apr 14;980(2):241–247. doi: 10.1016/0005-2736(89)90405-7. [DOI] [PubMed] [Google Scholar]
  30. Murer H., Werner A., Reshkin S., Wuarin F., Biber J. Cellular mechanisms in proximal tubular reabsorption of inorganic phosphate. Am J Physiol. 1991 May;260(5 Pt 1):C885–C899. doi: 10.1152/ajpcell.1991.260.5.C885. [DOI] [PubMed] [Google Scholar]
  31. Müller M., Ishikawa T., Berger U., Klünemann C., Lucka L., Schreyer A., Kannicht C., Reutter W., Kurz G., Keppler D. ATP-dependent transport of taurocholate across the hepatocyte canalicular membrane mediated by a 110-kDa glycoprotein binding ATP and bile salt. J Biol Chem. 1991 Oct 5;266(28):18920–18926. [PubMed] [Google Scholar]
  32. Nathanson M. H., Boyer J. L. Mechanisms and regulation of bile secretion. Hepatology. 1991 Sep;14(3):551–566. [PubMed] [Google Scholar]
  33. Nishida T., Gatmaitan Z., Che M., Arias I. M. Rat liver canalicular membrane vesicles contain an ATP-dependent bile acid transport system. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6590–6594. doi: 10.1073/pnas.88.15.6590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Njus D., Kelley P. M., Harnadek G. J. Bioenergetics of secretory vesicles. Biochim Biophys Acta. 1986;853(3-4):237–265. doi: 10.1016/0304-4173(87)90003-6. [DOI] [PubMed] [Google Scholar]
  35. Novak D. A., Sippel C. J., Ananthanarayanan M., Suchy F. J. Postnatal expression of the canalicular bile acid transport system of rat liver. Am J Physiol. 1991 May;260(5 Pt 1):G743–G751. doi: 10.1152/ajpgi.1991.260.5.G743. [DOI] [PubMed] [Google Scholar]
  36. Oda M., Price V. M., Fisher M. M., Phillips M. J. Ultrastructure of bile canaliculi, with special reference to the surface coat and the pericanalicular web. Lab Invest. 1974 Oct;31(4):314–323. [PubMed] [Google Scholar]
  37. Oude Elferink R. P., Ottenhoff R., Liefting W. G., Schoemaker B., Groen A. K., Jansen P. L. ATP-dependent efflux of GSSG and GS-conjugate from isolated rat hepatocytes. Am J Physiol. 1990 May;258(5 Pt 1):G699–G706. doi: 10.1152/ajpgi.1990.258.5.G699. [DOI] [PubMed] [Google Scholar]
  38. Ruetz S., Fricker G., Hugentobler G., Winterhalter K., Kurz G., Meier P. J. Isolation and characterization of the putative canalicular bile salt transport system of rat liver. J Biol Chem. 1987 Aug 15;262(23):11324–11330. [PubMed] [Google Scholar]
  39. Ruetz S., Hugentobler G., Meier P. J. Functional reconstitution of the canalicular bile salt transport system of rat liver. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6147–6151. doi: 10.1073/pnas.85.16.6147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sabolić I., Burckhardt G. Effect of the preparation method on Na+-H+ exchange and ion permeabilities in rat renal brush-border membranes. Biochim Biophys Acta. 1984 May 16;772(2):140–148. doi: 10.1016/0005-2736(84)90037-3. [DOI] [PubMed] [Google Scholar]
  41. Sippel C. J., Ananthanarayanan M., Suchy F. J. Isolation and characterization of the canalicular membrane bile acid transport protein of rat liver. Am J Physiol. 1990 May;258(5 Pt 1):G728–G737. doi: 10.1152/ajpgi.1990.258.5.G728. [DOI] [PubMed] [Google Scholar]
  42. Stieger B., Burckhardt G., Murer H. Demonstration of sodium-dependent, electrogenic substrate transport in rat small intestinal brush border membrane vesicles by a cyanine dye. Pflugers Arch. 1984 Feb;400(2):178–182. doi: 10.1007/BF00585036. [DOI] [PubMed] [Google Scholar]
  43. Stieger B., Burckhardt G., Murer H. The application of a potential-sensitive cyanine dye to rat small intestinal brush border membrane vesicles. Biochim Biophys Acta. 1983 Jul 13;732(1):324–326. doi: 10.1016/0005-2736(83)90221-3. [DOI] [PubMed] [Google Scholar]
  44. Stieger B., Stange G., Biber J., Murer H. Transport of L-cysteine by rat renal brush border membrane vesicles. J Membr Biol. 1983;73(1):25–37. doi: 10.1007/BF01870338. [DOI] [PubMed] [Google Scholar]
  45. Stolz A., Takikawa H., Ookhtens M., Kaplowitz N. The role of cytoplasmic proteins in hepatic bile acid transport. Annu Rev Physiol. 1989;51:161–176. doi: 10.1146/annurev.ph.51.030189.001113. [DOI] [PubMed] [Google Scholar]
  46. Strange R. C., Chapman B. T., Johnston J. D., Nimmo I. A., Percy-Robb I. W. Partitioning of bile acids into subcellular organelles and the in vivo distribution of bile acids in rat liver. Biochim Biophys Acta. 1979 Jun 21;573(3):535–545. doi: 10.1016/0005-2760(79)90227-3. [DOI] [PubMed] [Google Scholar]
  47. Van Dyke R. W. Proton pump-generated electrochemical gradients in rat liver multivesicular bodies. Quantitation and effects of chloride. J Biol Chem. 1988 Feb 25;263(6):2603–2611. [PubMed] [Google Scholar]
  48. Veith C. M., Thalhammer T., Felberbauer F. X., Graf J. Relationship of hepatic cholate transport to regulation of intracellular pH and potassium. Biochim Biophys Acta. 1992 Jan 10;1103(1):51–61. doi: 10.1016/0005-2736(92)90056-r. [DOI] [PubMed] [Google Scholar]
  49. Weinman S. A., Graf J., Boyer J. L. Voltage-driven, taurocholate-dependent secretion in isolated hepatocyte couplets. Am J Physiol. 1989 May;256(5 Pt 1):G826–G832. doi: 10.1152/ajpgi.1989.256.5.G826. [DOI] [PubMed] [Google Scholar]
  50. Yeh H. I., van Rossum G. D. Proton accumulation and ATPase activity in Golgi apparatus-enriched vesicles from rat liver. Hepatology. 1991 Mar;13(3):523–533. [PubMed] [Google Scholar]
  51. Yousef I. M., Barnwell S., Gratton F., Tuchweber B., Weber A., Roy C. C. Liver cell membrane solubilization may control maximum secretory rate of cholic acid in the rat. Am J Physiol. 1987 Jan;252(1 Pt 1):G84–G91. doi: 10.1152/ajpgi.1987.252.1.G84. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES