Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Jul 1;285(Pt 1):181–185. doi: 10.1042/bj2850181

Direct electrochemical studies of hydrogenase and CO dehydrogenase.

E T Smith 1, S A Ensign 1, P W Ludden 1, B A Feinberg 1
PMCID: PMC1132763  PMID: 1637298

Abstract

The reduction potentials of two relatively high-molecular-mass enzymes were determined directly at an edge pyrolytic graphite electrode by using square-wave voltammetry. The equilibrium reduction potential versus standard hydrogen electrode was determined for Clostridium pasteurianum hydrogenase I (E'0 = -377 +/- 10 mV; molecular mass 60 kDa) and Rhodospirillum rubrum carbon monoxide dehydrogenase (E'0 = -418 +/- 7 mV; molecular mass 62 kDa). The reduction potential of each enzyme was pH-independent, and one electron was transferred per redox centre. The reduction potential was determined to be identical for the CO dehydrogenase, semi-apo-(CO dehydrogenase), and CO dehydrogenase with carbonyl sulphide (COS) or cyanide bound. The electron-transferring efficiency of CO dehydrogenase was affected by two inhibitors, COS and cyanide, as indicated by a diminished analytic current.

Full text

PDF
181

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. W., Mortenson L. E. The physical and catalytic properties of hydrogenase II of Clostridium pasteurianum. A comparison with hydrogenase I. J Biol Chem. 1984 Jun 10;259(11):7045–7055. [PubMed] [Google Scholar]
  2. Adams M. W. The mechanisms of H2 activation and CO binding by hydrogenase I and hydrogenase II of Clostridium pasteurianum. J Biol Chem. 1987 Nov 5;262(31):15054–15061. [PubMed] [Google Scholar]
  3. Armstrong F. A., George S. J., Cammack R., Hatchikian E. C., Thomson A. J. Electrochemical and spectroscopic characterization of the 7Fe form of ferredoxin III from Desulfovibrio africanus. Biochem J. 1989 Nov 15;264(1):265–273. doi: 10.1042/bj2640265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bonam D., Ludden P. W. Purification and characterization of carbon monoxide dehydrogenase, a nickel, zinc, iron-sulfur protein, from Rhodospirillum rubrum. J Biol Chem. 1987 Mar 5;262(7):2980–2987. [PubMed] [Google Scholar]
  5. Eisenstein K. K., Wang J. H. Conversion of light to chemical free energy. I. Porphyrin-sensitized photoreduction of ferredoxin by glutathione. J Biol Chem. 1969 Apr 10;244(7):1720–1728. [PubMed] [Google Scholar]
  6. Ensign S. A., Bonam D., Ludden P. W. Nickel is required for the transfer of electrons from carbon monoxide to the iron-sulfur center(s) of carbon monoxide dehydrogenase from Rhodospirillum rubrum. Biochemistry. 1989 Jun 13;28(12):4968–4973. doi: 10.1021/bi00438a010. [DOI] [PubMed] [Google Scholar]
  7. Ensign S. A., Hyman M. R., Ludden P. W. Nickel-specific, slow-binding inhibition of carbon monoxide dehydrogenase from Rhodospirillum rubrum by cyanide. Biochemistry. 1989 Jun 13;28(12):4973–4979. doi: 10.1021/bi00438a011. [DOI] [PubMed] [Google Scholar]
  8. Frew J. E., Hill H. A. Direct and indirect electron transfer between electrodes and redox proteins. Eur J Biochem. 1988 Mar 1;172(2):261–269. doi: 10.1111/j.1432-1033.1988.tb13882.x. [DOI] [PubMed] [Google Scholar]
  9. Hagen W. R. Direct electron transfer of redox proteins at the bare glassy carbon electrode. Eur J Biochem. 1989 Jul 1;182(3):523–530. doi: 10.1111/j.1432-1033.1989.tb14859.x. [DOI] [PubMed] [Google Scholar]
  10. Henning S. J., Ballard P. L., Kretchmer N. A study of the cytoplasmic receptors for glucocorticoids in intestine of pre- and postweanling rats. J Biol Chem. 1975 Mar 25;250(6):2073–2079. [PubMed] [Google Scholar]
  11. Hyman M. R., Ensign S. A., Arp D. J., Ludden P. W. Carbonyl sulfide inhibition of CO dehydrogenase from Rhodospirillum rubrum. Biochemistry. 1989 Aug 22;28(17):6821–6826. doi: 10.1021/bi00443a007. [DOI] [PubMed] [Google Scholar]
  12. Magliozzo R. S., McIntosh B. A., Sweeney W. V. Origin of the pH dependence of the midpoint reduction potential in Clostridium pasteurianum ferredoxin:oxidation state-dependent hydrogen ion association. J Biol Chem. 1982 Apr 10;257(7):3506–3509. [PubMed] [Google Scholar]
  13. Nakos G., Mortenson L. Purification and properties of hydrogenase, an iron sulfur protein, from Clostridium pasteurianum W5. Biochim Biophys Acta. 1971 Mar 10;227(3):576–583. doi: 10.1016/0005-2744(71)90008-8. [DOI] [PubMed] [Google Scholar]
  14. Przysiecki C. T., Meyer T. E., Cusanovich M. A. Circular dichroism and redox properties of high redox potential ferredoxins. Biochemistry. 1985 May 7;24(10):2542–2549. doi: 10.1021/bi00331a022. [DOI] [PubMed] [Google Scholar]
  15. Smith E. T., Feinberg B. A. Redox properties of several bacterial ferredoxins using square wave voltammetry. J Biol Chem. 1990 Aug 25;265(24):14371–14376. [PubMed] [Google Scholar]
  16. Sobel B. E., Lovenberg W. Characteristics of Clostridium pasteurianum ferredoxin in oxidation-reduction reactions. Biochemistry. 1966 Jan;5(1):6–13. doi: 10.1021/bi00865a002. [DOI] [PubMed] [Google Scholar]
  17. Tagawa K., Arnon D. I. Oxidation-reduction potentials and stoichiometry of electron transfer in ferredoxins. Biochim Biophys Acta. 1968 Apr 2;153(3):602–613. doi: 10.1016/0005-2728(68)90188-6. [DOI] [PubMed] [Google Scholar]
  18. Van Dijk C., Mayhew S. G., Grande H. J., Veeger C. Purification and properties of hydrogenase from Megasphaera elsdenii. Eur J Biochem. 1979 Dec 17;102(2):317–330. doi: 10.1111/j.1432-1033.1979.tb04246.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES