Abstract
Serum riboflavin-binding protein, a phosphoglycoprotein from the blood of laying hens, contains two Asn-Xaa-(Thr)Ser sequons in very similar but well-separated regions of amino acid sequence. In order to evaluate the effect of local amino acid sequence on the structure of the attached oligosaccharides, serum riboflavin-binding protein was purified to homogeneity, reduced and alkylated, digested with trypsin, and the two glycopeptides were separated by reversed-phase chromatography. After digestion with peptide-N-glycosidase F the released oligosaccharides were separated by high-pH anion-exchange chromatography and the oligosaccharide profiles of the two glycopeptides were compared. Although the two asparagine residues that are glycosylated are contained in pentapeptide segments in which four out of five amino acids are identical, the array of oligosaccharides present at each site show differences in both type and distribution. This suggests that local secondary or tertiary structure, or the order of glycosylation, influences the oligosaccharide structure more than does the primary structure flanking the attachment site.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becvar J., Palmer G. The binding of flavin derivatives to the riboflavin-binding protein of egg white. A kinetic and thermodynamic study. J Biol Chem. 1982 May 25;257(10):5607–5617. [PubMed] [Google Scholar]
- Bilofsky H. S., Burks C. The GenBank genetic sequence data bank. Nucleic Acids Res. 1988 Mar 11;16(5):1861–1863. doi: 10.1093/nar/16.5.1861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carr S. A., Hemling M. E., Folena-Wasserman G., Sweet R. W., Anumula K., Barr J. R., Huddleston M. J., Taylor P. Protein and carbohydrate structural analysis of a recombinant soluble CD4 receptor by mass spectrometry. J Biol Chem. 1989 Dec 15;264(35):21286–21295. [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- Dahms N. M., Hart G. W. Influence of quaternary structure on glycosylation. Differential subunit association affects the site-specific glycosylation of the common beta-chain from Mac-1 and LFA-1. J Biol Chem. 1986 Oct 5;261(28):13186–13196. [PubMed] [Google Scholar]
- Einarsson M., Brandt J., Kaplan L. Large-scale purification of human tissue-type plasminogen activator using monoclonal antibodies. Biochim Biophys Acta. 1985 Jul 18;830(1):1–10. doi: 10.1016/0167-4838(85)90123-2. [DOI] [PubMed] [Google Scholar]
- Farrell H. M., Jr, Mallette M. F., Buss E. G., Clagett C. O. The nature of the biochemical lesion in avian renal riboflavinuria. 3. The isolation and characterization of the riboflavin-binding protein from egg albumen. Biochim Biophys Acta. 1969 Dec 23;194(2):433–442. doi: 10.1016/0005-2795(69)90103-2. [DOI] [PubMed] [Google Scholar]
- Fenselau C., Heller D. N., Miller M. S., White H. B., 3rd Phosphorylation sites in riboflavin-binding protein characterized by fast atom bombardment mass spectrometry. Anal Biochem. 1985 Nov 1;150(2):309–314. doi: 10.1016/0003-2697(85)90515-9. [DOI] [PubMed] [Google Scholar]
- Hamazume Y., Mega T., Ikenaka T. Characterization of hen egg white- and yolk-riboflavin binding proteins and amino acid sequence of egg white-riboflavin binding protein. J Biochem. 1984 Jun;95(6):1633–1644. doi: 10.1093/oxfordjournals.jbchem.a134776. [DOI] [PubMed] [Google Scholar]
- Hamazume Y., Mega T., Ikenaka T. Positions of disulfide bonds in riboflavin-binding protein of hen egg white. J Biochem. 1987 Jan;101(1):217–223. doi: 10.1093/oxfordjournals.jbchem.a121894. [DOI] [PubMed] [Google Scholar]
- Hardy M. R., Townsend R. R., Lee Y. C. Monosaccharide analysis of glycoconjugates by anion exchange chromatography with pulsed amperometric detection. Anal Biochem. 1988 Apr;170(1):54–62. doi: 10.1016/0003-2697(88)90089-9. [DOI] [PubMed] [Google Scholar]
- Hart G. W., Brew K., Grant G. A., Bradshaw R. A., Lennarz W. J. Primary structural requirements for the enzymatic formation of the N-glycosidic bond in glycoproteins. Studies with natural and synthetic peptides. J Biol Chem. 1979 Oct 10;254(19):9747–9753. [PubMed] [Google Scholar]
- Hsieh P., Rosner M. R., Robbins P. W. Host-dependent variation of asparagine-linked oligosaccharides at individual glycosylation sites of Sindbis virus glycoproteins. J Biol Chem. 1983 Feb 25;258(4):2548–2554. [PubMed] [Google Scholar]
- Hsieh P., Rosner M. R., Robbins P. W. Selective cleavage by endo-beta-N-acetylglucosaminidase H at individual glycosylation sites of Sindbis virion envelope glycoproteins. J Biol Chem. 1983 Feb 25;258(4):2555–2561. [PubMed] [Google Scholar]
- Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
- Kronquist K. E., Lennarz W. J. Enzymatic conversion of proteins to glycoproteins by lipid-linked saccharides: a study of potential exogenous acceptor proteins. J Supramol Struct. 1978;8(1):51–65. doi: 10.1002/jss.400080105. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lotter S. E., Miller M. S., Bruch R. C., White H. B., 3rd Competitive binding assays for riboflavin and riboflavin-binding protein. Anal Biochem. 1982 Sep 1;125(1):110–117. doi: 10.1016/0003-2697(82)90390-6. [DOI] [PubMed] [Google Scholar]
- Mega T., Ikenaka T. Methanolysis products of asparagine-linked N-acetylglucosamine and a new method for determination of N- and O-glycosidic N-acetylglucosamine in glycoproteins that contain asparagine-linked carbohydrates. Anal Biochem. 1982 Jan 1;119(1):17–24. doi: 10.1016/0003-2697(82)90659-5. [DOI] [PubMed] [Google Scholar]
- Miller M. S., Bruch R. C., White H. B., 3rd Carbohydrate compositional effects on tissue distribution of chicken riboflavin-binding protein. Biochim Biophys Acta. 1982 Mar 15;715(1):126–136. doi: 10.1016/0304-4165(82)90058-7. [DOI] [PubMed] [Google Scholar]
- Norioka N., Okada T., Hamazume Y., Mega T., Ikenaka T. Comparison of the amino acid sequences of hen plasma-, yolk-, and white-riboflavin binding proteins. J Biochem. 1985 Jan;97(1):19–28. doi: 10.1093/oxfordjournals.jbchem.a135044. [DOI] [PubMed] [Google Scholar]
- OSTROWSKI W., SKARZYNSKI B., ZAK Z. Isolation and properties of flavoprotein from the egg yolk. Biochim Biophys Acta. 1962 May 21;59:515–517. doi: 10.1016/0006-3002(62)90217-2. [DOI] [PubMed] [Google Scholar]
- Parekh R. B., Dwek R. A., Rudd P. M., Thomas J. R., Rademacher T. W., Warren T., Wun T. C., Hebert B., Reitz B., Palmier M. N-glycosylation and in vitro enzymatic activity of human recombinant tissue plasminogen activator expressed in Chinese hamster ovary cells and a murine cell line. Biochemistry. 1989 Sep 19;28(19):7670–7679. doi: 10.1021/bi00445a023. [DOI] [PubMed] [Google Scholar]
- Parekh R. B., Dwek R. A., Thomas J. R., Opdenakker G., Rademacher T. W., Wittwer A. J., Howard S. C., Nelson R., Siegel N. R., Jennings M. G. Cell-type-specific and site-specific N-glycosylation of type I and type II human tissue plasminogen activator. Biochemistry. 1989 Sep 19;28(19):7644–7662. doi: 10.1021/bi00445a021. [DOI] [PubMed] [Google Scholar]
- Piskarev V. E., Navrátil J., Karásková H., Bezouska K., Kocourek J. Interaction of egg-white glycoproteins and their oligosaccharides with the monomer and the hexamer of chicken liver lectin. A multivalent oligosaccharide-combining site exists within the carbohydrate-recognition domain. Biochem J. 1990 Sep 15;270(3):755–760. doi: 10.1042/bj2700755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pohl G., Kenne L., Nilsson B., Einarsson M. Isolation and characterization of three different carbohydrate chains from melanoma tissue plasminogen activator. Eur J Biochem. 1987 Dec 30;170(1-2):69–75. doi: 10.1111/j.1432-1033.1987.tb13668.x. [DOI] [PubMed] [Google Scholar]
- Powell L. D., Hart G. W. Quantitation of picomole levels of N-acetyl- and N-glycolylneuraminic acids by a HPLC-adaptation of the thiobarbituric acid assay. Anal Biochem. 1986 Aug 15;157(1):179–185. doi: 10.1016/0003-2697(86)90211-3. [DOI] [PubMed] [Google Scholar]
- RHODES M. B., BENNETT N., FEENEY R. E. The flavoprotein-apoprotein system of egg white. J Biol Chem. 1959 Aug;234(8):2054–2060. [PubMed] [Google Scholar]
- Reddy V. A., Johnson R. S., Biemann K., Williams R. S., Ziegler F. D., Trimble R. B., Maley F. Characterization of the glycosylation sites in yeast external invertase. I. N-linked oligosaccharide content of the individual sequons. J Biol Chem. 1988 May 25;263(15):6978–6985. [PubMed] [Google Scholar]
- Shao M. C., Chin C. C., Caprioli R. M., Wold F. The regulation of glycan processing in glycoproteins. The effect of avidin on individual steps in the processing of biotinylated glycan derivatives. J Biol Chem. 1987 Mar 5;262(7):2973–2979. [PubMed] [Google Scholar]
- Spellman M. W., Basa L. J., Leonard C. K., Chakel J. A., O'Connor J. V., Wilson S., van Halbeek H. Carbohydrate structures of human tissue plasminogen activator expressed in Chinese hamster ovary cells. J Biol Chem. 1989 Aug 25;264(24):14100–14111. [PubMed] [Google Scholar]
- Spellman M. W., Leonard C. K., Basa L. J., Gelineo I., van Halbeek H. Carbohydrate structures of recombinant soluble human CD4 expressed in Chinese hamster ovary cells. Biochemistry. 1991 Mar 5;30(9):2395–2406. doi: 10.1021/bi00223a015. [DOI] [PubMed] [Google Scholar]
- Struck D. K., Lennarz W. J., Brew K. Primary structural requirements for the enzymatic formation of the N-glycosidic bond in glycoproteins. Studies with alpha-lactalbumin. J Biol Chem. 1978 Aug 25;253(16):5786–5794. [PubMed] [Google Scholar]
- Townsend R. R., Hardy M. R. Analysis of glycoprotein oligosaccharides using high-pH anion exchange chromatography. Glycobiology. 1991 Mar;1(2):139–147. doi: 10.1093/glycob/1.2.139. [DOI] [PubMed] [Google Scholar]
- Trimble R. B., Maley F., Chu F. K. GlycoProtein biosynthesis in yeast. protein conformation affects processing of high mannose oligosaccharides on carboxypeptidase Y and invertase. J Biol Chem. 1983 Feb 25;258(4):2562–2567. [PubMed] [Google Scholar]
- WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Welinder K. G., Svendsen A. Amino acid sequence analysis of the glycopeptides from human complement component C3. FEBS Lett. 1986 Jun 23;202(1):59–62. doi: 10.1016/0014-5793(86)80649-4. [DOI] [PubMed] [Google Scholar]
- White H. B., 3rd Biotin-binding proteins and biotin transport to oocytes. Ann N Y Acad Sci. 1985;447:202–211. doi: 10.1111/j.1749-6632.1985.tb18438.x. [DOI] [PubMed] [Google Scholar]
- White H. B., 3rd, Merrill A. H., Jr Riboflavin-binding proteins. Annu Rev Nutr. 1988;8:279–299. doi: 10.1146/annurev.nu.08.070188.001431. [DOI] [PubMed] [Google Scholar]
- Winter W. P., Buss E. G., Clagett C. O., Boucher R. V. The nature of the biochemical lesion in avian renal riboflavinuria. II. The inherited change of a riboflavin-binding protein from blood and eggs. Comp Biochem Physiol. 1967 Sep;22(3):897–906. doi: 10.1016/0010-406x(67)90780-3. [DOI] [PubMed] [Google Scholar]
- Yet M. G., Chin C. C., Wold F. The covalent structure of individual N-linked glycopeptides from ovomucoid and asialofetuin. J Biol Chem. 1988 Jan 5;263(1):111–117. [PubMed] [Google Scholar]
- Zheng D. B., Lim H. M., Pène J. J., White H. B., 3rd Chicken riboflavin-binding protein. cDNA sequence and homology with milk folate-binding protein. J Biol Chem. 1988 Aug 15;263(23):11126–11129. [PubMed] [Google Scholar]
- Ziegler F. D., Maley F., Trimble R. B. Characterization of the glycosylation sites in yeast external invertase. II. Location of the endo-beta-N-acetylglucosaminidase H-resistant sequons. J Biol Chem. 1988 May 25;263(15):6986–6992. [PubMed] [Google Scholar]