Skip to main content
Current Genomics logoLink to Current Genomics
. 2024 Apr 8;25(4):261–297. doi: 10.2174/0113892029273121240401060228

Genes Selectively Expressed in Rat Organs

Dan Li 1,#, Xulian Wan 2,#, Yu Yun 1, Yongkun Li 2, Weigang Duan 2,*
PMCID: PMC11327808  PMID: 39156728

Abstract

Background

Understanding organic functions at a molecular level is important for scientists to unveil the disease mechanism and to develop diagnostic or therapeutic methods.

Aims

The present study tried to find genes selectively expressed in 11 rat organs, including the adrenal gland, brain, colon, duodenum, heart, ileum, kidney, liver, lung, spleen, and stomach.

Materials and Methods

Three normal male Sprague-Dawley (SD) rats were anesthetized, their organs mentioned above were harvested, and RNA in the fresh organs was extracted. Purified RNA was reversely transcribed and sequenced using the Solexa high-throughput sequencing technique. The abundance of a gene was measured by the expected value of fragments per kilobase of transcript sequence per million base pairs sequenced (FPKM). Genes in organs with the highest expression level were sought out and compared with their median value in organs. If a gene in the highest expressed organ was significantly different (p < 0.05) from that in the medianly expressed organ, accompanied by q value < 0.05, and accounted for more than 70% of the total abundance, the gene was assumed as the selective gene in the organ.

Results & Discussion

The Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) pathways were enriched by the highest expressed genes. Based on the criterion, 1,406 selective genes were screened out, 1,283 of which were described in the gene bank and 123 of which were waiting to be described. KEGG and GO pathways in the organs were partly confirmed by the known understandings and a good portion of the pathways needed further investigation.

Conclusion

The novel selective genes and organic functional pathways are useful for scientists to unveil the mechanisms of the organs at the molecular level, and the selective genes’ products are candidate disease markers for organs.

Keywords: High-throughput sequencing, selective expression, organic markers, rat, genetic variations, DNA

1. INTRODUCTION

It was once believed that all somatic cells shared the same genome because all of a creature's cells and organs develop from a fertilized egg. The expression of an animal’s genome controls the animal’s functions, whose functions are executed by its cells. Therefore, cells have different functions depending on different gene expression profiles [1, 2], and so do different tissues and organs. The other gene expression profiles will doom cell differentiation [3], organ development [4], and its functions. Based on the understanding, it can be assumed that some genes as constructive ones must be universally expressed in all the cells with a nucleus, and some could be selectively expressed in cells, tissues, and organs at different developmental stages [5, 6]. At an animal’s adulthood, its gene expression profiles could be relatively stable to maintain its biological functions, and the gene expression profile would reflect its function. Therefore, the products (RNAs and proteins) from the gene selectively expressed in an organ suggest its function(s).

Health and disease are the eternal themes of humans, and are usually related to gene expression profiles. The mechanism study on human health and disease is generally carried on model animals at first, then on humans. Among them, adult rats and mice are model animals most frequently used by scientists, and no animals are studied more deeply than them. Therefore, it is a good strategy to understand humans by investigating gene expression profiles in rats. Identifying molecular targets and disease markers from rats and mice is usually the first step to understanding human health and disease, then to finding therapeutic strategies and methods. The selective gene products released into the blood can be used as damage markers. However, it is a big premise to understand the normal model animal’s biological features at the molecular level before scientists comprehensively understand human health and disease [7]. There were much data from animals suggesting that some genes selectively expressed in organs, e.g. NeuN (Rbfox3) in the brain or neuron [8] though with alternative opinions [9], troponin (Tnnc1, Tnni3) in the heart [10], glutamic pyruvic transaminase (GPT, Gpt) in the liver [11], and neutrophil gelatinase-associated lipocalin (NGAL) in the kidney [12]. The findings are very useful and even were adopted for clinic diagnosis and treatment. The gene products selectively and originally distributed can be used as molecular organic markers and then make disease diagnosis more accurate or earlier. Nevertheless, in the background of precision medicine [13], the selective gene products in organs are still insufficient for clinical practice, and it is still necessary to systematically screen the genes selectively expressed in organs.

Proteins and RNAs are the end products of genes and execute their functions. To identify the selective functions at the molecular level, all the selectively distributed proteins in organs should be screened out. However, among them, protein screening is a big economic burden because the study would consume plenty of antibodies. Since proteins and RNAs were transcribed and even then translated from genes, the present study would apply high-throughput sequencing technology to analyze gene expression profiles of 11 organs, including the adrenal gland, brain, colon, duodenum, heart, ileum, kidney, liver, lung, spleen, and stomach, at the RNA level, and then, based on the results, to find the likely organic markers and analyze the functional pathways the selective genes would be involved in.

2. MATERIALS AND METHODS

2.1. Materials

Adult male Sprague-Dawley (SD) rats (age, 45 days; body weight, 180-220 g) were obtained from Chengdu Dossy Experimental Animal Co. Ltd., Chengdu, China [Certification No. SCXK (Chuan) 2008–24]. TRIzol Plus RNA Purification kit was purchased from Invitrogen (Carlsbad, CA, USA). Ultra-pure water was produced with a Milli Q water purification system manufactured by EMD Millipore Group (Darmstadt, Germany). NanoDrop ND-1000 spectrophotometer was manufactured by PeqLab (Erlangen, Germany). The multimicroplate reader of Infinite 200pro was manufactured by Tecan Group (Mannedorf, Switzerland). Other instruments or reagents used in the present study were made in China if not mentioned.

2.2. Animal Treatment

Three rats were normally treated for three days. Then, the animals were intraperitoneally anesthetized with urethane (1.0 g/kg). The rats’ chests and abdomens were opened, and their organs were harvested, including the adrenal gland (Ad), brain (frontal cortex) (Br), colon (Co), duodenum (the first 5 cm) (Du), heart (left ventricle) (He), ileum (the end 5 cm) (Il), kidney (right) (Ki), liver (Li), lung (right) (Lu), spleen (Sp), and stomach (gastric antrum) (St). The tunica and mesentery of the organs were removed clearly. All the organs were frozen with liquid nitrogen and kept at -80°C by dry ice to keep them fresh, and then sent to Sangon Biotech Co. Ltd. (Shanghai China) (https://www.sangon.com/) immediately for high-throughput sequencing.

The animal experiments were approved by the Animal Care and Use Committee of Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine (Approved No. LL-20171023-01), Yunnan University of Traditional Chinese Medicine.

2.3. High-throughput Sequencing of mRNA

The fresh organs were frozen with liquid nitrogen and ground to powder. The total RNA in the powder was extracted and purified using the TRIzol Plus RNA Purification kit (Invitrogen, Carlsbad, CA, USA). The quantity and quality of RNA were measured by the NanoDrop ND-1000 spectrophotometer. RNA integrity was assessed by three bands (28S, 18S, and 5S) using formaldehyde denaturing agarose gel electrophoresis RNA as previously described [14, 15].

Similar to the results of our previous study [16], double-stranded cDNA (ds-cDNA) was reversely transcribed from the total RNA using a SuperScript ds-cDNA synthesis kit (Invitrogen, Carlsbad, USA) in the presence of 100 pmol/L oligo dT primers. Solexa high-throughput sequencing technique was used to sequence the cDNA by Sangon Biotech Co. Ltd. (Shanghai, China). The raw data containing reads of 150 bases of nucleotide in fastq format was transformed to original sequences in fasta format by Seqkit software in the disc operation system (DOS) model [17]. The sequences that matched 27 bp or more to the rat’s reference mRNA sequences (https://www.ncbi.nlm.nih.gov/) were screened out by TBtools software (v0.664445552). The expected value of fragments per kilobase of transcript sequence per million base pairs sequenced (FPKM) was used for the normalization of expression level [18].

2.4. Screening Genes Selectively Expressed

Values of gene’s FPKM in every organ were collected. The overall function of the organs at the gene expression level was analyzed by cluster analysis. The distance between organs was calculated by the Vegan package of Bray curtis method [19], and the cluster tree was established by Hcluster [20].

Based on the assumption that a gene is significantly overexpressed in an organ (statistical consideration), if its expression abundance accounts for the majority of that in all organs, say more than 70%, the gene is considered to be selectively expressed in that organ. The maximum FPKM value of a gene in any organs less than 5 was ignored because the expression level of the gene was supposed to be too low to analyze. Genes with FPKM above 5 were further analyzed. The means of a gene’s FPKM in all the organs were sorted. The organ with the median value and those with the biggest value were selected. Then, the expression level of the gene in the two organs (the highest and median organs) was compared with the Student t-test. The q-value, a false-discovery rate alternative to p-values, was also calculated as an adjustment for multiple comparisons [21]. If p-value and q-value were both less than 0.05, the gene was regarded as a candidate gene selectively expressed in the organ.

The means of the gene in all the organs were summed up as “Total”. The mean of the gene in the organ highest expressed it was regarded as “max mean”. Then, the MT ratio ((max mean)/total) was calculated. If the MT ratio was above 0.7, the gene was regarded as a selective gene in the organ. The gene’s product in the organ was regarded as an organic marker that may execute the selective function of the organ. The last reports on the relationship between the selective genes and the organs were searched at PubMed (www.pubmed.gov) on June 10, 2023.

The last report of the selective gene from the PubMed database was sought in the relative organ by searching the gene name and the organ both in the fields of title or abstract.

2.5. KEGG, and GO Analysis

The values of a gene in all the organs were sorted by its mean, and the organ that expressed the median value and that expressed the biggest value were selected. The expression abundance of the gene in the two organs was compared with the Student t-test. If there was significance (p < 0.05), the gene in the organ was regarded as an interesting gene. Interesting genes expressed in an organ were further analyzed to enrich the selective Kyoto Encyclopedia of Genes and Genomes (KEGG, https://www.kegg.jp/) and Gene Ontology (GO, http://www.geneontology.org/) pathways. KEGG enrichment [22] and KOG enrichment [23, 24] were performed by ClusterProfiler [25]. GO [26, 27] enrichment was performed by TopGO. The p-value and q-value were also calculated using the software mentioned above.

3. RESULTS

3.1. Total FPKM Distribution

In the normal rats, 32,623 genes’ transcripts were detected, and most genes were expressed at a very low level (FPKM < 1), only a small portion of genes expressed at a very high level (FPKM > 1000) (Fig. 1A). The overall FPKM distribution of every organ was similar. However, organs’ function is believed to be different, which suggests that the gene most highly expressed in one organ could be different from that in the other. According to the results of cluster analysis at the expression level (Fig. 1B), the function of the colon is near the ileum, then to the duodenum and stomach, which is easy to be understood. The function of the kidney is near to the adrenal gland, then to the heart and brain; and the spleen's function is near to the lung. To our surprise, the function of the liver was far from that of the other organs.

Fig. (1).

Fig. (1)

Distribution of gene expression and clustering analysis was made from 32,623 genes’ transcripts detected. The distribution of gene expression in different organs was similar (Mean ± SD, n = 3) (A). However, the function of the organs was different based on the clustering analysis of total gene expression from 11 organs (n = 3) (B). Abbreviations: Ad, adrenal gland; Br, brain; Co, colon; Du, duodenum; He, heart; Il, ileum; Ki, kidney; Li, liver; Lu, lung; Sp, spleen; St, stomach.

3.2. Genes with Description Selectively Expressed in Different Organs

There were 15,922 genes with FPKM in any organ above 5, and 14,115 genes were significantly (p < 0.05) highly expressed in an organ. Among them, there were 12,617 genes accepted with q < 0.05. Apart from 123 genes without description, there were 1,283 genes with description selectively expressed in 11 organs (Fig. 2). From the results from Fig. (2), the brain (Br) was the organ with the most complex function because 459 genes were selectively expressed in it. Instead, the gastrointestinal tracts, including the stomach (St), duodenum (Du), ileum (Il), and colon (Co), selectively expressed fewer genes, suggesting that their functions could be relatively simple or similar to other organs.

Fig. (2).

Fig. (2)

Genes selectively expressed in different organs based on their abundance. Abbreviations: Ad, adrenal gland; Br, brain; Co, colon; Du, duodenum; He, heart; Il, ileum; Ki, kidney; Li, liver; Lu, lung; Sp, spleen; St, stomach.

The total genes selectively expressed or the top 20 (if more) in 11 organs are listed in Tables 1-11. Their full lists can be seen in the supplementary data. According to the description of the gene name, most selective genes were associated with the known specific functions of the organ. For example, Mgarp (mitochondria-localized glutamic acid-rich protein) in the adrenal gland (Table 1) is associated with steroidogenesis [28]; Scg3 (secretogranin III) in the brain (Table 2) with neuroendocrine [29]; Reg3g (regenerating islet-derived 3 gamma) in the colon (Table 3) with intestinal bacterial translocation to the mesenteric lymph nodes [30]; Gip (gastric inhibitory polypeptide) in the duodenum (Table 4) with regulation of insulin secretion [31]; Klhl38 (kelch-like family member 38) in the heart (Table 5), though seldom reported, could be associated with the reversion of striated muscle atrophy [32]; Defa24 (defensin alpha 24) in the ileum (Table 6) with intestinal barrier [33]; Slc3a1 [solute carrier family 3 (amino acid transporter heavy chain), member 1] in the kidney (Table 7) with the transport of cystine and other amino acids across the membrane [34]; C5 (hemolytic complement) in the liver (Table 8) was early verified to execute innate immune [35]; Icam1 (intercellular adhesion molecule 1) in the lung (Table 9) with innate immune [36]; Coch (cochlin) used to highly expressed in the inner ear [37] also highly expressed in the spleen (Table 10); and Cxcl17 (chemokine (C-X-C motif) ligand 17) in the stomach (Table 11) with its innate immune [38]. Nevertheless, there were many genes that were not reported in the relative organs (supplementary data).

Table 1.

Top 20 of 40 genes with description selectively expressed in the adrenal gland (Ad) based on their abundance (n = 3).

No. Gene Name Product (Description) Last Ref.* Median Organ FPKM p-value q-value Mean/total
Mean Total - - -
1 Mgarp Mitochondria-localized glutamic acid-rich protein [39] He 469.5 473.5 1.018E-06 0.000 0.992
2 Lrcol1 Leucine rich colipase-like 1 - Ki 7.6 7.8 1.165E-06 0.000 0.967
3 Cyp21a1 Cytochrome P450, family 21, subfamily a, polypeptide 1 [40] St 9139.9 9148.9 2.277E-06 0.001 0.999
4 Akr1b7 Aldo-keto reductase family 1, member B7 [41] Ki 2280.6 2281.5 5.124E-06 0.001 1.000
5 Cyp11b2 Cytochrome P450, family 11, subfamily b, polypeptide 2 [42] Lu 327.8 337.2 5.121E-05 0.003 0.972
6 Mir450a1 MicroRNA 450a1 - St 12.8 13.2 9.565E-05 0.004 0.967
7 Star Steroidogenic acute regulatory protein [43] St 1438.9 1457.2 1.444E-04 0.005 0.987
8 Ceacam16 Carcinoembryonic antigen-related cell adhesion molecule 16 - Co 73.6 74.6 1.595E-04 0.005 0.986
9 Mrap Melanocortin 2 receptor accessory protein [44] St 413.8 448.9 1.809E-04 0.006 0.922
10 Nkain3 Na+/K+ transporting ATPase interacting 3 - St 6.6 7.9 2.328E-04 0.006 0.837
11 Nr0b1 Nuclear receptor subfamily 0, group B, member 1 [45] Co 41.1 42.0 2.828E-04 0.007 0.979
12 Pbx4 Pre-B-cell leukemia homeobox 4 - Du 15.4 21.5 3.187E-04 0.007 0.715
13 Slc27a3 Solute carrier family 27 (fatty acid transporter), member 3 - St 141.2 167.2 3.292E-04 0.007 0.844
14 Mc2r Melanocortin 2 receptor (adrenocorticotropic hormone) [46] St 58.6 63.3 3.388E-04 0.008 0.925
15 Eepd1 Endonuclease/exonuclease/phosphatase family domain containing 1 - Co 561.4 668.3 3.895E-04 0.008 0.840
16 Nr5a1 Nuclear receptor subfamily 5, group A, member 1 [47] Br 51.8 61.4 3.918E-04 0.008 0.843
17 Tmem200a Transmembrane protein 200A - St 23.9 30.3 4.488E-04 0.009 0.789
18 LOC108348086 Hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2 - Du 557.5 558.7 4.900E-04 0.009 0.998
19 Fdx1 Ferredoxin 1 [48] Du 2301.0 2657.4 5.368E-04 0.010 0.866
20 Cyp11a1 Cytochrome P450, family 11, subfamily a, polypeptide 1 [49] Co 4795.7 4802.2 5.905E-04 0.010 0.999

Note: Sorted by q-value. Br, brain; Co, colon; Du, duodenum; He, heart; Ki, kidney; Lu, lung; St, stomach.

* Last Ref. was based on the reports documented in PubMed (www.pubmed.gov) before June 10, 2023.

Table 11.

Top 20 of 24 genes with description selectively expressed in the stomach (St) based on their abundance (n = 3).

No. Gene Name Product (Description) Last Ref.* Median Organ FPKM p-value q-value Mean/total
Mean Total
1 Cxcl17 Chemokine (C-X-C motif) ligand 17 [152] Br 822.1 1042.0 1.41E-09 1.07E-05 0.789
2 Kcnk16 Potassium channel, two pore domain subfamily K, member 16 - Co 7.8 9.2 4.69E-07 1.11E-04 0.855
3 Anxa10 Annexin A10 [153] Br 946.4 954.5 1.83E-06 5.52E-04 0.991
4 Fxyd3 FXYD domain-containing ion transport regulator 3 [154] Li 1153.4 1435.8 3.18E-05 2.04E-03 0.803
5 Ptf1a Pancreas-specific transcription factor, 1a [155] Ad 10.1 12.0 1.99E-04 5.83E-03 0.849
6 Slc9a4 Solute carrier family 9, subfamily A (NHE4, cation proton antiporter 4), member 4 [156] Lu 59.4 64.8 3.05E-04 7.22E-03 0.917
7 Slc9b2 Solute carrier family 9, subfamily B (NHA2, cation proton antiporter 2), member 2 - Sp 18.4 22.4 4.37E-04 8.55E-03 0.820
8 Adam28 ADAM metallopeptidase domain 28 [157] Ad 44.4 46.2 5.68E-04 9.90E-03 0.963
9 Macc1 Metastasis associated in colon cancer 1 [158] Li 8.7 10.1 9.53E-04 1.29E-02 0.862
10 Slc26a9 Solute carrier family 26 (anion exchanger), member 9 [159] Ki 98.8 116.7 9.95E-04 1.32E-02 0.847
11 Psca Prostate stem cell antigen [160] Co 10716.9 10801.0 1.13E-03 1.41E-02 0.992
12 Ghrl Ghrelin/obestatin prepropeptide [161] Sp 1965.4 2120.2 1.63E-03 1.70E-02 0.927
13 Vsig1 V-set and immunoglobulin domain containing 1 [162] Br 270.6 274.9 2.01E-03 1.89E-02 0.984
14 Pik3c2g Phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 gamma - Co 19.2 25.9 2.39E-03 2.07E-02 0.741
15 Atp4b ATPase, H+/K+ exchanging, beta polypeptide [163] Du 3191.2 3201.1 2.63E-03 2.18E-02 0.997
16 Slc26a7 Solute carrier family 26 (anion exchanger), member 7 [164] Co 17.0 19.5 2.72E-03 2.21E-02 0.876
17 Atp4a ATPase, H+/K+ exchanging, alpha polypeptide [163] Ki 1945.2 1952.4 3.51E-03 2.53E-02 0.996
18 Clic6 Chloride intracellular channel 6 [165] He 230.4 241.4 5.96E-03 3.34E-02 0.954
19 Gkn1 Gastrokine 1 [166] Ad 58685.7 59018.3 6.44E-03 3.48E-02 0.994
20 Hdc Histidine decarboxylase [167] Sp 154.9 178.9 9.09E-03 4.19E-02 0.866

Note: Sorted by q-value. Ad, adrenal gland; Br, brain; Co, colon; Du, duodenum; He, heart; Ki, kidney; Li, liver; Lu, lung; Sp, spleen.

* Last Ref. was based on the reports documented in PubMed (www.pubmed.gov) before June 10, 2023.

Table 2.

Top 20 of 459 genes with description selectively expressed in the brain (Br) based on their abundance (n = 3).

No. Gene Name Product (Description) Last Ref.* Median Organ FPKM p-value q-value Mean/total
Mean Total
1 Dio2 Preoptic regulatory factor 1 [50] Sp 11.5 14.1 5.821E-08 3.324E-07 0.82
2 Scg3 Secretogranin III [51] Du 197.4 215.7 4.057E-09 1.592E-05 0.91
3 Gabbr1 Gamma-aminobutyric acid (GABA) B receptor 1 [52] Ad 448.3 627.1 2.797E-06 2.563E-05 0.71
4 Asic2 Acid-sensing (proton-gated) ion channel 2 [53] Co 19.1 25.8 8.626E-08 9.567E-05 0.74
5 Adcyap1r1 Adenylate cyclase-activating polypeptide 1 receptor type 1 [54] Co 36.9 44.8 1.593E-07 1.165E-04 0.82
6 Chst10 Carbohydrate sulfotransferase 10 [55] He 37.1 47.6 3.197E-06 3.522E-04 0.78
7 Larp6 La ribonucleoprotein domain family, member 6 - St 17.8 24.1 3.871E-06 3.944E-04 0.74
8 Vsnl1 Visinin-like 1 [56] Il 406.5 450.9 1.252E-06 4.572E-04 0.90
9 Snap91 Synaptosomal-associated protein 91 [57] Co 139.3 148.7 1.341E-06 4.692E-04 0.94
10 Tceal3 Transcription elongation factor A (SII)-like 6 [58] He 132.8 141.2 2.179E-06 5.977E-04 0.94
11 Pdzd4 PDZ domain containing 4 [59] Du 42.5 50.0 2.611E-06 6.401E-04 0.85
12 LOC100911402 Cell cycle exit and neuronal differentiation 1 - He 231.8 236.2 3.063E-06 6.991E-04 0.98
13 Acsbg1 Acyl-CoA synthetase bubblegum family member 1 - Lu 106.6 126.1 3.093E-06 7.091E-04 0.85
14 Gdap1l1 Ganglioside-induced differentiation-associated protein 1-like 1 [60] Du 70.6 77.1 3.576E-06 7.453E-04 0.92
15 Adgrb3 Adhesion G protein-coupled receptor B3 [61] Du 22.1 22.8 3.932E-06 7.981E-04 0.97
16 Fam131b Family with sequence similarity 131, member B [62] Lu 56.2 58.1 3.942E-06 8.091E-04 0.97
17 Plp1 Proteolipid protein 1 [63] He 1572.6 1599.8 4.805E-06 8.959E-04 0.98
18 Nipal4 NIPA-like domain containing 4 - Du 6.3 7.9 1.199E-05 9.210E-04 0.79
19 RragB Ras-related GTP-binding protein B-like [64] He 15.2 19.4 2.190E-05 1.143E-03 0.78
20 Stmn3 Stathmin-like 3 [65] Du 887.3 918.2 8.338E-06 1.180E-03 0.97

Note: Sorted by q-value. Ad, adrenal gland; Co, colon; Du, duodenum; He, heart; Il, ileum; Ki, kidney; Lu, lung; Sp, spleen; St, stomach.

* Last Ref. was based on the reports documented in PubMed (www.pubmed.gov) before June 10, 2023.

Table 3.

Top genes with description selectively expressed in the colon (Co) based on their abundance (n = 3).

No Gene Name Product (Description) Last Ref.* Median Organ FPKM p-value Q-value Mean/total
Mean Total
1 Reg3g Regenerating islet-derived 3 gamma [66] Lu 9161.7 12157.8 1.46E-08 4.93E-05 0.754
2 Reg3b Regenerating islet-derived 3 beta [66] Br 6569.9 8784.4 6.70E-06 1.06E-03 0.748
3 St6galnac1 ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N- acetylgalactosaminide alpha-2,6-sialyltransferase 1 [67] Br 286.1 294.8 7.56E-06 1.12E-03 0.971
4 Ighg Immunoglobulin heavy chain (gamma polypeptide) [68] Br 78.0 106.8 7.38E-05 2.67E-03 0.730
5 Hmcn2 Hemicentin 2 - St 30.5 31.2 1.55E-04 5.12E-03 0.977
6 LOC290595 Hypothetical gene supported by AF152002 - Ad 103.0 146.0 1.75E-04 5.46E-03 0.706
7 Ace Angiotensin I converting enzyme [69] St 51.5 59.7 6.53E-04 1.06E-02 0.861
8 LOC691670 Similar to natural killer cell protease 7 - Sp 11.1 15.4 6.77E-03 3.56E-02 0.724
9 Fgf19 Fibroblast growth factor 19 [70] Ad 41.2 43.2 9.63E-03 4.32E-02 0.953
10 Mir192 MicroRNA 192 [71] Ad 6.9 6.9 1.17E-02 4.80E-02 1.000

Note: Sorted by q-value. Ad, adrenal gland; Br, brain; Lu, lung; Sp, spleen; St, stomach.

* Last Ref. was based on the reports documented in PubMed (www.pubmed.gov) before June 10, 2023.

Table 4.

Top 20 of 25 genes with description selectively expressed in the duodenum (Du) based on their abundance (n = 3).

No. Gene Name Product (Description) Last Refs.* Median Organ FPKM p-value q-value Mean/total
Mean Total
1 Gip Gastric inhibitory polypeptide [72] Ad 79.2 81.4 7.42E-06 1.11E-03 0.973
2 LOC100910259 Liver carboxylesterase-like - Sp 498.7 699.5 5.32E-05 2.99E-03 0.713
3 Prap1 Proline-rich acidic protein 1 - Br 4433.8 4622.2 9.65E-05 4.04E-03 0.959
4 Papss2 3'-phosphoadenosine 5'-phosphosulfate synthase 2 - Sp 649.9 779.5 1.20E-04 4.51E-03 0.834
5 Tm4sf5 Transmembrane 4 L six family member 5 - Ad 940.9 1272.0 1.36E-04 4.81E-03 0.740
6 RGD1311933 Similar to RIKEN cDNA 2310057J18 - Ad 221.2 221.9 2.62E-04 6.69E-03 0.997
7 Cyp2c7 Cytochrome P450, family 2, subfamily c, polypeptide 7 - Ad 48.0 50.7 3.56E-04 7.82E-03 0.947
8 Aadac Arylacetamide deacetylase - St 96.4 133.8 6.93E-04 1.10E-02 0.720
9 Tmprss15 Transmembrane protease, serine 15 - Sp 138.8 139.2 7.87E-04 1.17E-02 0.997
10 RGD1561551 Similar to Hypothetical protein MGC75664 - Ad 842.1 842.9 1.28E-03 1.50E-02 0.999
11 Alppl2 Alkaline phosphatase, placental-like 2 - Co 60.3 71.1 1.40E-03 1.57E-02 0.848
12 Akp3 Alkaline phosphatase 3, intestine, not Mn requiring [73] Ad 2279.3 2280.1 1.67E-03 1.72E-02 1.000
13 Ada Adenosine deaminase [74] Ki 1461.9 2071.3 1.74E-03 1.76E-02 0.706
14 Bco1 Beta-carotene oxygenase 1 [75] Ki 160.1 210.3 1.78E-03 1.78E-02 0.761
15 Slc4a7 Solute carrier family 4, sodium bicarbonate cotransporter, member 7 [75, 76] St 108.5 137.6 1.90E-03 1.79E-02 0.789
16 Alpi Alkaline phosphatase, intestinal [77] Br 1098.5 1193.8 1.84E-03 1.81E-02 0.920
17 Treh Trehalase (brush-border membrane glycoprotein) [78] Ki 260.7 268.5 2.44E-03 2.09E-02 0.971
18 Trpv6 Transient receptor potential cation channel, subfamily V, member 6 [79] Sp 24.2 32.7 2.45E-03 2.10E-02 0.741
19 Otop3 Otopetrin 3 - Co 69.3 70.2 3.51E-03 2.53E-02 0.987
20 Pdx1 Pancreatic and duodenal homeobox 1 [80] Ad 58.6 61.7 4.91E-03 3.02E-02 0.950

Note: Sorted by q-value. Ad, adrenal gland; Br, brain; Co, colon; Ki, kidney; Sp, spleen; St, stomach.

* Last Refs. was based on the reports documented in PubMed (www.pubmed.gov) before June 10, 2023.

Table 5.

The top 20 of 130 genes with description are selectively expressed in the heart (He) based on their abundance(n = 3).

No. Gene Name Product (Description) Last Ref.* Median Organ FPKM p-value q-value Mean/total
Mean Total
1 Klhl38 Kelch-like family member 38 [81] St 10.4 13.4 4.25E-07 1.64E-04 0.776
2 Rbm24 RNA binding motif protein 24 [82, 83] Co 45.0 58.7 7.37E-07 1.98E-04 0.768
3 Ldb3 LIM domain binding 3 [84] St 541.1 590.9 5.15E-07 2.81E-04 0.916
4 LOC100909784 Leiomodin 2 (cardiac) - St 92.6 93.6 5.36E-07 2.99E-04 0.989
5 Hspb2 Heat shock protein B2 [85] St 183.4 212.0 2.62E-06 4.35E-04 0.865
6 Itgb1bp2 Integrin beta 1 binding protein 2 [86] Du 121.2 140.6 1.30E-06 4.44E-04 0.862
7 Klhl31 Kelch-like family member 31 [87] Sp 57.0 58.4 1.22E-06 4.49E-04 0.975
8 Tnni3k TNNI3 interacting kinase [88] Ad 85.4 86.6 1.26E-06 4.58E-04 0.986
9 Pla2g5 Phospholipase A2, Group V [89] Sp 54.0 60.0 2.19E-06 4.89E-04 0.899
10 Fsd2 Fibronectin type III and SPRY domain containing 2 [90] Du 47.6 48.3 1.87E-06 5.56E-04 0.986
11 Tmem182 Transmembrane protein 182 [91] Ki 79.9 84.0 2.18E-06 5.88E-04 0.951
12 Rd3l Retinal degeneration 3-like - Ad 18.5 23.6 7.90E-06 1.10E-03 0.785
13 Nkx2-5 NK2 homeobox 5 [92] Lu 75.9 84.4 7.41E-06 1.11E-03 0.899
14 Sgcg Sarcoglycan, gamma [93] Il 93.4 110.5 1.83E-05 1.13E-03 0.845
15 Hhatl Hedgehog acyltransferase-like [94] Ki 119.2 133.1 8.86E-06 1.22E-03 0.896
16 Cav3 Caveolin 3 [95] Sp 116.1 123.7 9.50E-06 1.24E-03 0.939
17 LOC691485 Hypothetical protein LOC691485 - Br 24.1 29.9 2.37E-05 1.26E-03 0.807
18 Kbtbd12 Kelch repeat and BTB (POZ) domain containing 12 - St 16.2 18.2 1.23E-05 1.35E-03 0.891
19 Txlnb Taxilin beta - Co 68.5 69.3 1.57E-05 1.62E-03 0.987
20 Spink8 Serine peptidase inhibitor, Kazal type 8 - Br 166.1 187.3 2.10E-05 1.74E-03 0.887

Note: Sorted by q-value. Ad, adrenal gland; Br, brain; Co, colon; Du, duodenum; Il, ileum; Ki, kidney; Lu, lung; Sp, spleen; St, stomach.

* Last Ref. was based on the reports documented in PubMed (www.pubmed.gov) before June 10, 20123.

Table 6.

Top genes with description selectively expressed in the ileum (Il) based on their abundance (n = 3).

No. Gene Name Product (Description) Last Ref.* Median Organ FPKM p-value q-value Mean/total
Mean Total
1 LOC100910656 rCG60069-like - Sp 244.0 341.0 0.001 0.011 0.715
2 Defa24 Defensin alpha 24 - Ad 15591.7 19391.4 0.001 0.011 0.804
3 Fabp6 Fatty acid binding protein 6, ileal [96] Ki 51493.4 56686.5 0.001 0.012 0.908
4 Defal1 Defensin alpha-like 1 - Ad 29241.0 34877.4 0.001 0.015 0.838
5 Pla2g4c Phospholipase A2, group IVC-like 1 - St 26.1 30.0 0.005 0.030 0.869

Note: Sorted by q-value. Ad, adrenal gland; Ki, kidney; Sp, spleen; St, stomach.

* Last Ref. was based on the reports documented in PubMed (www.pubmed.gov) before June 10, 2023.

Table 7.

Top 20 of 158 genes with description selectively expressed in the kidney (Ki) based on their abundance(n = 3).

No. Gene Name Product (Description) Last Ref.* Median Organ FPKM p-value q-value Mean/total
Mean Total
1 C1qtnf3 C1q and tumor necrosis factor-related protein 3 - He 32.5 42.7 7.02E-07 7.13E-07 0.760
2 Pter Phosphotriesterase related [97] Co 184.9 239.7 1.00E-08 2.91E-06 0.771
3 Gclc Glutamate-cysteine ligase, catalytic subunit [98] Ad 1920.8 2266.6 1.91E-08 1.55E-05 0.847
4 Slc3a1 Solute carrier family 3 (amino acid transporter heavy chain), member 1 [99] He 1569.4 1923.0 5.63E-09 3.01E-05 0.816
5 Trpv4 Transient receptor potential cation channel, subfamily V, member 4 [100] St 30.2 37.6 1.65E-06 4.90E-05 0.803
6 Skint10 Selection and upkeep of intraepithelial T cells 10 - Ad 5.3 5.5 2.71E-08 6.73E-05 0.965
7 LOC688553 Hypothetical protein LOC688553 - Du 62.3 71.8 1.07E-06 1.09E-04 0.868
8 Stra6 Stimulated by retinoic acid 6 [101] Sp 22.4 25.8 4.59E-07 1.45E-04 0.868
9 RGD1310495 Similar to KIAA1919 protein - Il 71.5 82.3 1.64E-07 1.64E-04 0.869
10 Wdr72 WD repeat domain 72 [102] Il 8.0 9.9 1.94E-07 1.80E-04 0.805
11 Haao 3-hydroxyanthranilate 3,4-dioxygenase [103] Il 444.3 616.7 2.08E-07 1.86E-04 0.720
12 Emx2 Empty spiracles homeobox 2 [104] St 13.9 16.2 2.79E-07 2.16E-04 0.857
13 Gba3 Glucosidase, beta, acid 3 [105] Ad 172.9 173.3 3.61E-07 2.45E-04 0.998
14 Car12 Carbonic anyhydrase 12 [106] Ad 352.9 454.9 2.45E-06 2.67E-04 0.776
15 Pdzk1ip1 PDZK1 interacting protein 1 [107] Du 390.1 434.3 4.90E-07 2.77E-04 0.898
16 Spo11 SPO11 meiotic protein covalently bound to DSB [108] Br 6.9 8.8 2.97E-06 2.93E-04 0.787
17 Slc6a18 Solute carrier family 6 (neutral amino acid transporter), member 18 [109] Ad 273.3 274.3 7.07E-07 3.44E-04 0.996
18 Glyat Glycine-N-acyltransferase [110] Ad 756.4 947.6 1.17E-06 4.42E-04 0.798
19 Aspa Aspartoacylase [111] Li 140.1 199.1 4.18E-06 5.53E-04 0.703
20 Cyp4a2 Cytochrome P450, family 4, subfamily a, polypeptide 2 [112] Co 561.2 737.0 2.15E-06 5.99E-04 0.761

Note: Sorted by q-value. Ad, adrenal gland; Br, brain; Co, colon; Du, duodenum; He, heart; Il, ileum; Li, liver; Sp, spleen; St, stomach.

* Last Ref. was based on the reports documented in PubMed (www.pubmed.gov) before June 10, 2023.

Table 8.

Top 20 of 208 genes with description selectively expressed in the liver (Li) based on their abundance (n = 3).

No Gene Name Product (Description) Last Ref.* Median Organ FPKM p-value q-value Mean/total
Mean Total
1 C5 Hemolytic complement [113] Sp 118.2 142.0 9.584E-10 1.152E-05 0.833
2 Serpind1 Serpin peptidase inhibitor, clade D (heparin cofactor), member 1 [114] Ad 389.6 390.6 9.631E-08 1.267E-04 0.997
3 Saa4 Hermansky-Pudlak syndrome 5 [115] Ki 691.8 743.6 1.417E-07 1.510E-04 0.930
4 Crp C-reactive protein, pentraxin-related [116] Ki 5777.4 5787.5 1.605E-07 1.636E-04 0.998
5 C8b Complement component 8, beta polypeptide [117] Ad 295.8 297.0 1.661E-07 1.664E-04 0.996
6 C4bpa Complement component 4 binding protein, alpha [118] He 295.7 308.0 2.467E-07 2.024E-04 0.960
7 Cfi Complement factor I [118] Ki 469.3 534.4 4.264E-07 2.665E-04 0.878
8 C8g Complement component 8, gamma polypeptide [119] Br 180.5 214.3 6.792E-07 3.024E-04 0.842
9 Slc13a4 Solute carrier family 13 (sodium/sulfate symporter), member 4 [120] Il 27.9 38.9 6.273E-07 3.033E-04 0.718
10 Tmprss6 Transmembrane protease, serine 6 [121] Il 170.2 171.0 5.620E-07 3.060E-04 0.995
11 Uroc1 Urocanate hydratase 1 - Ki 100.5 101.0 6.137E-07 3.200E-04 0.995
12 Afm Afamin [122] Br 694.3 744.9 6.160E-07 3.206E-04 0.932
13 Mug1 Alpha-1-inhibitor III [123] Ad 5659.4 5677.1 8.210E-07 3.702E-04 0.997
14 Mbl1 Mannose-binding lectin (protein A) 1 [124] Sp 230.0 249.3 1.212E-06 4.497E-04 0.922
15 F10 Coagulation factor X [125] Il 292.5 297.8 1.706E-06 5.317E-04 0.982
16 LOC
100909524
Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 10 - Br 95.6 98.0 1.825E-06 5.477E-04 0.975
17 Slc38a4 Solute carrier family 38, member 4 [126] St 209.4 212.6 1.996E-06 5.758E-04 0.985
18 Glyatl1 Glycine-N-acyltransferase-like 1 [127] Il 109.9 116.8 2.111E-06 5.936E-04 0.941
19 C4bpb Complement component 4 binding protein, beta [118] Ki 305.3 313.2 2.177E-06 6.020E-04 0.975
20 Pzp Pregnancy-zone protein [128] Il 2009.8 2053.1 2.243E-06 6.122E-04 0.979

Note: Sorted by q-value. Ad, adrenal gland; Br, brain; He, heart; Il, ileum; Ki, kidney; Sp, spleen; St, stomach.

* Last Ref. was based on the reports documented in PubMed (www.pubmed.gov) before June 10, 2023.

Table 9.

Top 20 of 122 genes with description selectively expressed in rat lung (Lu) based on their abundance (n = 3).

No. Gene Name Product (Description) Last Ref.* Median Organ FPKM p-value q-value Mean/total
Mean Total
1 St8sia2 ST8 alpha-N-acetyl-neuraminide alpha-2,8- sialyltransferase 2 [129] Il 7.0 8.1 3.25E-07 6.25E-07 0.872
2 Ly6l Lymphocyte antigen 6 family member L [130] Br 77.2 103.7 5.49E-08 5.61E-05 0.745
3 Icam1 Intercellular adhesion molecule 1 [131] Il 242.5 329.3 1.12E-06 7.80E-05 0.736
4 LOC102546678 Proline-rich Gla (G-carboxyglutamic acid) 3 (transmembrane) - Il 18.0 20.5 1.97E-07 1.37E-04 0.879
5 LOC102554838 Stathmin domain-containing protein 1-like - Co 6.2 8.6 2.53E-07 2.02E-04 0.726
6 Thbd Thrombomodulin [132] Il 297.8 387.8 1.70E-06 2.35E-04 0.768
7 Matn4 Matrilin 4 [133] Ad 36.4 46.0 2.30E-06 3.47E-04 0.791
8 LOC681341 Similar to paired immunoglobin-like type 2 receptor β - Co 11.6 15.8 2.74E-06 3.79E-04 0.733
9 Prrg3 Proline-rich Gla (G-carboxyglutamic acid) 3 (transmembrane) - Co 17.5 19.4 1.66E-06 5.23E-04 0.903
10 Lhb Luteinizing hormone beta polypeptide [134] Ki 10.3 13.9 9.59E-06 5.31E-04 0.746
11 Acvrl1 Activin A receptor type II-like 1 [135] Ki 238.0 336.0 2.12E-06 5.85E-04 0.708
12 Pifo Primary cilia formation [136] Ad 6.3 7.9 2.64E-06 6.65E-04 0.803
13 Scgb1a1 Secretoglobin, family 1A, member 1 (uteroglobin) [137] Ad 21465.0 21576.2 3.55E-06 7.70E-04 0.995
14 Fhad1 Forkhead-associated (FHA) phosphopeptide binding domain 1 - Ki 9.2 10.7 5.42E-06 7.71E-04 0.854
15 Nme9 NME/NM23 family member 9 - Ad 9.0 10.4 3.60E-06 7.76E-04 0.868
16 RGD1561648 RGD1561648 - Co 7.6 10.6 9.11E-06 8.24E-04 0.718
17 LOC108348266 Cytochrome P450, family 2, subfamily b, polypeptide 1 - Br 528.5 702.5 6.04E-06 1.00E-03 0.752
18 Dram1 DNA-damage regulated autophagy modulator 1 [138] Ad 133.1 177.1 1.04E-05 1.04E-03 0.752
19 Limch1 LIM and calponin homology domains 1 [139] St 174.7 216.9 8.99E-06 1.17E-03 0.805
20 LOC680885 Hypothetical protein LOC680885 - Ad 14.2 15.3 1.09E-05 1.35E-03 0.928

Note: Sorted by q-value. Ad, adrenal gland; Br, brain; Co, colon; Il, ileum; Ki, kidney; St, stomach.

* Last Ref. was based on the reports documented in PubMed (www.pubmed.gov) before June 10, 2023.

Table 10.

Top 20 of 102 genes with description selectively expressed in the spleen (Sp) based on their abundance (n = 3).

No. Gene Name Product (Description) Last Ref.* Median Organ FPKM p-value q-value Mean/total
Mean Total
1 Coch Cochlin [140] Il 318.4 345.0 6.96E-11 6.89E-08 0.923
2 SNORD79 Small nucleolar RNA, C/D box 79 - St 13.3 17.8 6.87E-06 1.07E-03 0.747
Tlx1 T-cell leukemia, homeobox 1 [141] Br 23.4 25.1 1.68E-05 1.66E-03 0.933
3 Erfe Family with sequence similarity 132, member B [142] Du 11.6 13.0 3.33E-05 2.17E-03 0.892
4 Trim59 Tripartite motif-containing 59 [143] Ki 104.2 131.3 4.80E-05 2.60E-03 0.794
5 Treml2 Triggering receptor expressed on myeloid cells-like 2 - Du 27.9 35.3 6.25E-05 3.24E-03 0.790
SNORA4 Small nucleolar RNA, H/ACA box 4 - St 10.9 14.5 6.42E-05 3.29E-03 0.755
6 Spic Spi-C transcription factor (Spi-1/PU.1 related) [144] Il 38.4 43.6 7.65E-05 3.57E-03 0.880
7 Adgre4 EGF-like module containing mucin-like, hormone receptor-like sequence 4 - Du 26.0 34.9 1.44E-04 4.25E-03 0.743
8 Kel Kell blood group, metallo-endopeptidase [145] Br 140.8 146.6 1.10E-04 4.31E-03 0.961
9 Tspo2 Translocator protein 2 - Du 45.0 47.3 1.18E-04 4.44E-03 0.950
10 Defb36 Defensin beta 36 - Ad 6.1 7.3 1.70E-04 5.38E-03 0.833
11 Icam4 Intercellular adhesion molecule 4, Landsteiner-Wiener blood group [146] Ad 20.1 22.7 1.93E-04 5.43E-03 0.884
12 Mylk2 Myosin light chain kinase 2 - Ad 14.2 16.3 1.80E-04 5.49E-03 0.872
13 Epb42 Erythrocyte membrane protein band 4.2 - Ki 88.5 91.6 1.95E-04 5.75E-03 0.966
14 Tnn Tenascin N [147] Ad 8.0 9.3 2.22E-04 6.02E-03 0.862
15 Grap2 GRB2-related adaptor protein 2 - Br 35.2 46.2 2.38E-04 6.32E-03 0.761
16 Cxcl6 Chemokine (C-X-C motif) ligand 6 [148] St 6.3 8.0 3.06E-04 6.33E-03 0.791
17 Clec4m CD209b antigen [149] Ki 45.6 46.6 2.35E-04 6.33E-03 0.978
18 LOC681325 Hypothetical protein LOC681325 - He 17.2 20.7 2.59E-04 6.54E-03 0.830
19 Ahsp Alpha hemoglobin stabilizing protein [150] St 2059.2 2118.7 2.61E-04 6.68E-03 0.972
20 Rhag Rh-associated glycoprotein [151] Il 179.6 180.0 2.74E-04 6.84E-03 0.998

Note: Sorted by q-value. Ad, adrenal gland; Br, brain; Du, duodenum; He, heart; Il, ileum; Ki, kidney; St, stomach.

* Last Ref. was based on the reports documented in PubMed (www.pubmed.gov) before June 10, 2023.

3.3. KEGG and GO Pathway Enrichment

3.3.1. KEGG Pathway Enrichment

KEGG is a bioinformatics database resource for understanding high-level functions and utilities of the biological system, which includes the cell, the organism, and the ecosystem, from molecular-level information, especially large-scale molecular datasets generated by genome sequencing and other high-throughput experimental technologies. The selective KEGG pathways were enriched based on the abundance of genes most highly expressed in organs. The number of the selective pathway is listed in Fig. (3) and the top 20 pathways are listed in Tables 12-22. Their full lists can be seen in the supplementary data. There were 179 “selective” pathways in 11 rat organs. Among them, 52 pathways were involved in two organs, 7 in three organs, and 1 in four organs. It should be noted that the “selective” pathways engaged in two or more organs were based on enrichment analysis. As can be seen from Fig. (3), organs with many selective pathways, like the brain, indicate that they undertake many complex functions. Conversely, organs with few selective pathways, like the adrenal glands and stomach, indicate their relatively simple functions. The results in Fig. (3), suggested that the lung could be the top 2 organs with the complex functions of the 11 organs.

Fig. (3).

Fig. (3)

Selective KEGG enrichment in different organs was based on the abundance of genes most highly expressed in organs. Abbreviations: Ad, adrenal gland; Br, brain; Co, colon; Du, duodenum; He, heart; Il, ileum; Ki, kidney; Li, liver; Lu, lung; Sp, spleen; St, stomach.

Table 12.

Selective KEGG pathways in the adrenal gland.

No ID Description Significant Annotated p-value q-value
1 ko03010* Ribosome 21/283 133/5400 4.36E-06 0.001
2 ko03050 Proteasome 10/283 39/5400 2.19E-05 0.002
3 ko00061 Fatty acid biosynthesis 5/283 11/5400 1.36E-04 0.008
4 ko03020 RNA polymerase 7/283 27/5400 3.61E-04 0.014
5 ko04925* Aldosterone synthesis and secretion 9/283 44/5400 3.67E-04 0.014
6 ko00240* Pyrimidine metabolism 12/283 78/5400 6.58E-04 0.020

Note: * also significantly expressed in other organs. Sorted by q-value.

Table 22.

Selective KEGG pathways in the stomach.

No. ID Description Significant Annotated p-value q-value
1 ko04971* Gastric acid secretion 7/117 42/5400 2.70E-05 0.003
2 ko04080* Neuroactive ligand-receptor interaction 14/117 218/5400 0.000 0.012
3 ko04270* Vascular smooth muscle contraction 8/117 80/5400 0.0001 0.012

Note: * also significantly expressed in other organs. Sorted by q-value.

The function of some pathways was verified in relative organs based on common understandings, for example, ko04925 (Aldosterone synthesis and secretion) in the adrenal gland (Table 12), ko04721 (Synaptic vesicle cycle) in the brain (Table 13), ko04672 (Intestinal immune network for IgA production) in the colon (Table 14), ko04975 (Fat digestion and absorption) in the duodenum (Table 15), ko04260 (Cardiac muscle contraction) in the heart (Table 16), ko00520 (Amino sugar and nucleotide sugar metabolism) in the ileum (Table 17), ko04964 (Proximal tubule bicarbonate reclamation) in the kidney (Table 18), ko04976 (Bile secretion) in the liver (Table 19), ko04151 (PI3K-Akt signaling pathway) in the lung (Table 20), ko04640 (Hematopoietic cell lineage) in the spleen (Table 21), and ko04971 (Gastric acid secretion) in the stomach (Table 22).

Table 13.

Top 20 of 50 Selective KEGG pathways in the brain.

No ID Description Significant Annotated p-value q-value
1 ko04721 Synaptic vesicle cycle 33/874 43/5400 0.000 0.000
2 ko04724 Glutamatergic synapse 39/874 67/5400 0.000 0.000
3 ko04723 Retrograde endocannabinoid signaling 38/874 65/5400 0.000 0.000
4 ko04080* Neuroactive ligand-receptor interaction 77/874 218/5400 0.000 0.000
5 ko04727 GABAergic synapse 31/874 55/5400 0.000 0.000
6 ko04725 Cholinergic synapse 31/874 65/5400 0.000 0.000
7 ko04728 Dopaminergic synapse 36/874 87/5400 0.000 0.000
8 ko04713 Circadian entrainment 28/874 59/5400 0.000 0.000
9 ko04360* Axon guidance 44/874 118/5400 0.000 0.000
10 ko04020* Calcium signaling pathway 39/874 105/5400 0.000 0.000
11 ko04726 Serotonergic synapse 30/874 73/5400 0.000 0.000
12 ko04911 Insulin secretion 24/874 53/5400 0.000 0.000
13 ko04921 Oxytocin signaling pathway 36/874 99/5400 0.000 0.000
14 ko04024 cAMP signaling pathway 40/874 117/5400 0.000 0.000
15 ko04540* Gap junction 26/874 63/5400 0.000 0.000
16 ko04072* Phospholipase D signaling pathway 32/874 90/5400 0.000 0.000
17 ko04261* Adrenergic signaling in cardiomyocytes 32/874 92/5400 0.000 0.000
18 ko04114 Oocyte meiosis 29/874 80/5400 0.000 0.000
19 ko04070 Phosphatidylinositol signaling system 23/874 58/5400 0.000 0.000
20 ko04915 Estrogen signaling pathway 23/874 60/5400 0.000 0.000

Note: * also significantly expressed in other organs. Sorted by q-value.

Table 14.

Selective KEGG pathways in the colon.

No. ID Description Significant Annotated p-value q-value
1 ko04630 Jak-STAT signaling pathway 19/218 94/5400 3.69E-09 5.12E-07
2 ko04060* Cytokine-cytokine receptor interaction 23/218 163/5400 1.07E-07 7.46E-06
3 ko04064* NF-kappa B signaling pathway 12/218 65/5400 8.39E-06 0.000
4 ko04380* Osteoclast differentiation 13/218 87/5400 3.82E-05 0.001
5 ko04210 Apoptosis 14/218 102/5400 5.09E-05 0.001
6 ko04672* Intestinal immune network for IgA production 7/218 32/5400 2.25E-04 0.005
7 ko04660* T cell receptor signaling pathway 11/218 78/5400 2.58E-04 0.005
8 ko04071* Sphingolipid signaling pathway 11/218 85/5400 5.52E-04 0.010
9 ko04214 Apoptosis - fly 7/218 43/5400 1.48E-03 0.021
10 ko04620* Toll-like receptor signaling pathway 9/218 68/5400 1.49E-03 0.021
11 ko04919* Thyroid hormone signaling pathway 9/218 69/5400 1.66E-03 0.021
12 ko04621* NOD-like receptor signaling pathway 7/218 45/5400 1.94E-03 0.023
13 ko04520* Adherens junction 7/218 46/5400 2.22E-03 0.024
14 ko04068* FoxO signaling pathway 10/218 94/5400 4.34E-03 0.043

Note: * also significantly expressed in other organs. Sorted by q-value.

Table 15.

Selective KEGG pathways in the duodenum.

No. ID Description Significant Annotated p-value q-value
1 ko03010* Ribosome 29/264 133/5400 3.76E-12 6.37E-10
2 ko04975 Fat digestion and absorption 10/264 26/5400 1.75E-07 1.48E-05
3 ko04978* Mineral absorption 10/264 30/5400 8.30E-07 4.69E-05
4 ko04974 Protein digestion and absorption 13/264 60/5400 4.44E-06 0.000
5 ko04972 Pancreatic secretion 13/264 64/5400 9.47E-06 0.000
6 ko00564 Glycerophospholipid metabolism 11/264 69/5400 0.000 0.013
7 ko00450 Selenocompound metabolism 4/264 10/5400 0.001 0.021
8 ko00561 Glycerolipid metabolism 8/264 44/5400 0.001 0.021
9 ko04141* Protein processing in the endoplasmic reticulum 15/264 126/5400 0.001 0.021
10 ko00051 Fructose and mannose metabolism 6/264 28/5400 0.002 0.033

Note: * also significantly expressed in other organs. Sorted by q-value.

Table 16.

Top 20 of 21 Selective KEGG pathways in the heart.

No. ID Description Significant Annotated p-value q-value
1 ko00190 Oxidative phosphorylation 74/331 108/5400 1.14E-66 2.01E-64
2 ko04260 Cardiac muscle contraction 27/331 54/5400 2.79E-19 2.46E-17
3 ko00020 Citrate cycle (TCA cycle) 16/331 24/5400 1.31E-14 7.70E-13
4 ko01200* Carbon metabolism 28/331 94/5400 5.94E-13 2.61E-11
5 ko00640* Propanoate metabolism 9/331 21/5400 1.67E-06 5.88E-05
6 ko00620 Pyruvate metabolism 10/331 28/5400 3.18E-06 9.32E-05
7 ko01210 2-Oxocarboxylic acid metabolism 6/331 13/5400 6.02E-05 0.002
8 ko00010 Glycolysis / Gluconeogenesis 11/331 48/5400 0.000 0.002
9 ko02020 Two-component system 5/331 10/5400 0.000 0.003
10 ko00280* Valine, leucine and isoleucine degradation 9/331 35/5400 0.000 0.003
11 ko00720 Carbon fixation pathways in prokaryotes 5/331 11/5400 0.000 0.005
12 ko04020* Calcium signaling pathway 16/331 105/5400 0.001 0.008
13 ko04922* Glucagon signaling pathway 11/331 59/5400 0.001 0.010
14 ko03010* Ribosome 18/331 133/5400 0.001 0.014
15 ko04261 Adrenergic signaling in cardiomyocytes 14/331 92/5400 0.001 0.015
16 ko00650* Butanoate metabolism 6/331 22/5400 0.002 0.017
17 ko00710 Carbon fixation in photosynthetic organisms 6/331 22/5400 0.002 0.017
18 ko00071* Fatty acid degradation 7/331 30/5400 0.002 0.018
19 ko04022* cGMP - PKG signaling pathway 15/331 108/5400 0.002 0.021
20 ko01230* Biosynthesis of amino acids 10/331 63/5400 0.005 0.040

Note: * also significantly expressed in other organs. Sorted by q-value.

Table 17.

Selective KEGG pathways in the ileum.

No. ID Description Significant Annotated p-value q-value
1 ko04612 Antigen processing and presentation 20/333 63/5400 4.25E-10 7.87E-08
2 ko04144* Endocytosis 35/333 189/5400 2.23E-09 2.06E-07
3 ko04141* Protein processing in endoplasmic reticulum 22/333 126/5400 6.72E-06 0.000
4 ko04145* Phagosome 21/333 121/5400 1.20E-05 0.001
5 ko03010 Ribosome 22/333 133/5400 1.65E-05 0.001
6 ko04672* Intestinal immune network for IgA production 9/333 32/5400 9.15E-05 0.003
7 ko04514* Cell adhesion molecules (CAMs) 17/333 108/5400 0.000 0.007
8 ko00520 Amino sugar and nucleotide sugar metabolism 9/333 37/5400 0.000 0.007

Note: * also significantly expressed in other organs. Sorted by q-value.

Table 18.

Top 20 of 23 selective KEGG pathways in the kidney.

No. ID Description Significant Annotated p-value q-value
1 ko04146* Peroxisome 23/386 62/5400 1.04E-11 1.93E-09
2 ko04961* Endocrine and other factor-regulated calcium reabsorption 13/386 35/5400 3.61E-07 3.35E-05
3 ko04964 Proximal tubule bicarbonate reclamation 8/386 16/5400 4.91E-06 0.000
4 ko00630* Glyoxylate and dicarboxylate metabolism 9/386 21/5400 6.03E-06 0.000
5 ko00770 Pantothenate and CoA biosynthesis 7/386 13/5400 1.06E-05 0.000
6 ko04142* Lysosome 18/386 87/5400 3.12E-05 0.001
7 ko00280* Valine, leucine and isoleucine degradation 10/386 35/5400 0.000 0.003
8 ko00260* Glycine, serine and threonine metabolism 9/386 29/5400 0.000 0.003
9 ko00071* Fatty acid degradation 9/386 30/5400 0.000 0.003
10 ko00480 Glutathione metabolism 9/386 33/5400 0.000 0.007
11 ko00640* Propanoate metabolism 7/386 21/5400 0.000 0.007
12 ko04614 Renin-angiotensin system 7/386 21/5400 0.000 0.007
13 ko00040* Pentose and glucuronate interconversions 6/386 16/5400 0.001 0.008
14 ko00790 Folate biosynthesis 4/386 7/5400 0.001 0.010
15 ko00910* Nitrogen metabolism 6/386 17/5400 0.001 0.010
16 ko01200* Carbon metabolism 16/386 94/5400 0.001 0.010
17 ko04978* Mineral absorption 8/386 30/5400 0.001 0.010
18 ko00330 Arginine and proline metabolism 8/386 35/5400 0.003 0.028
19 ko00730 Thiamine metabolism 3/386 5/5400 0.003 0.032
20 ko00650* Butanoate metabolism 6/386 22/5400 0.004 0.033

Note: * also significantly expressed in other organs. Sorted by q-value.

Table 19.

Top 20 of 34 selective KEGG pathways in the liver.

No. ID Description Significant Annotated p-value q-value
1 ko04610 Complement and coagulation cascades 37/265 55/5400 1.98E-36 2.97E-34
2 ko00140 Steroid hormone biosynthesis 15/265 33/5400 7.31E-12 5.46E-10
3 ko00830 Retinol metabolism 14/265 38/5400 1.12E-09 5.59E-08
4 ko00260* Glycine, serine and threonine metabolism 11/265 29/5400 5.09E-08 1.90E-06
5 ko03320 PPAR signaling pathway 14/265 56/5400 3.03E-07 9.05E-06
6 ko00120 Primary bile acid biosynthesis 6/265 10/5400 2.35E-06 5.85E-05
7 ko04976 Bile secretion 12/265 51/5400 4.34E-06 9.27E-05
8 ko00220 Arginine biosynthesis 6/265 12/5400 9.50E-06 0.000
9 ko00980 Metabolism of xenobiotics by cytochrome P450 9/265 32/5400 1.49E-05 0.000
10 ko01230* Biosynthesis of amino acids 12/265 63/5400 4.30E-05 0.001
11 ko00053 Ascorbate and aldarate metabolism 5/265 10/5400 5.64E-05 0.001
12 ko00982 Drug metabolism - cytochrome P450 8/265 31/5400 8.90E-05 0.001
13 ko00340 Histidine metabolism 6/265 17/5400 0.000 0.001
14 ko01040 Biosynthesis of unsaturated fatty acids 6/265 18/5400 0.000 0.002
15 ko00591 Linoleic acid metabolism 6/265 22/5400 0.001 0.005
16 ko01200* Carbon metabolism 13/265 94/5400 0.001 0.006
17 ko00500 Starch and sucrose metabolism 6/265 24/5400 0.001 0.007
18 ko00983 Drug metabolism - other enzymes 6/265 24/5400 0.001 0.007
19 ko00100 Steroid biosynthesis 4/265 12/5400 0.002 0.016
20 ko00430 Taurine and hypotaurine metabolism 3/265 6/5400 0.002 0.016

Note: * also significantly expressed in other organs. Sorted by q-value.

Table 20.

Top 20 of 46 Selective KEGG pathways in the lung.

No. ID Description Significant Annotated p-value q-value
1 ko04510 Focal adhesion 45/703 126/5400 4.16E-11 4.01E-09
2 ko04360* Axon guidance 43/703 118/5400 5.36E-11 4.01E-09
3 ko04390 Hippo signaling pathway 40/703 110/5400 2.77E-10 1.38E-08
4 ko04151 PI3K-Akt signaling pathway 59/703 223/5400 2.85E-08 1.06E-06
5 ko04310 Wnt signaling pathway 34/703 100/5400 4.42E-08 1.32E-06
6 ko04550 Signaling pathways regulating pluripotency of stem cells 32/703 93/5400 8.06E-08 2.01E-06
7 ko04668* TNF signaling pathway 29/703 83/5400 2.26E-07 4.83E-06
8 ko04392 Hippo signaling pathway - multiple species 12/703 19/5400 4.56E-07 7.60E-06
9 ko04014* Ras signaling pathway 44/703 159/5400 4.57E-07 7.60E-06
10 ko04010* MAPK signaling pathway 46/703 177/5400 1.76E-06 2.63E-05
11 ko04060* Cytokine-cytokine receptor interaction 43/703 163/5400 2.52E-06 3.41E-05
12 ko04015* Rap1 signaling pathway 37/703 132/5400 2.73E-06 3.41E-05
13 ko04062* Chemokine signaling pathway 35/703 123/5400 3.50E-06 4.03E-05
14 ko04916* Melanogenesis 22/703 63/5400 6.67E-06 7.12E-05
15 ko04340 Hedgehog signaling pathway 13/703 27/5400 9.61E-06 9.57E-05
16 ko04512 ECM-receptor interaction 17/703 46/5400 3.23E-05 0.000
17 ko04341 Hedgehog signaling pathway - Fly 10/703 19/5400 4.01E-05 0.000
18 ko04144* Endocytosis 44/703 189/5400 5.91E-05 0.000
19 ko04650* Natural killer cell mediated cytotoxicity 25/703 86/5400 5.92E-05 0.000
20 ko04810* Regulation of actin cytoskeleton 36/703 149/5400 0.000 0.001

Note: * also significantly expressed in other organs. Sorted by q-value.

Table 21.

Top 20 of 33 selective KEGG pathways in the spleen.

No. ID Description Significant Annotated p-value q-value
1 ko04110 Cell cycle 48/667 95/5400 6.13E-20 9.87E-18
2 ko04111 Cell cycle - yeast 32/667 57/5400 2.09E-15 1.68E-13
3 ko03013 RNA transport 50/667 131/5400 2.02E-14 1.08E-12
4 ko03040 Spliceosome 44/667 113/5400 3.47E-13 1.40E-11
5 ko03030 DNA replication 20/667 29/5400 1.78E-12 5.73E-11
6 ko04064* NF-kappa B signaling pathway 27/667 65/5400 2.64E-09 7.08E-08
7 ko04113 Meiosis - yeast 22/667 49/5400 1.43E-08 3.28E-07
8 ko03420 Nucleotide excision repair 18/667 37/5400 6.48E-08 1.30E-06
9 ko04640 Hematopoietic cell lineage 21/667 49/5400 8.29E-08 1.48E-06
10 ko03460 Fanconi anemia pathway 15/667 32/5400 1.52E-06 2.45E-05
11 ko03430 Mismatch repair 9/667 14/5400 7.15E-06 0.000
12 ko03015 mRNA surveillance pathway 23/667 73/5400 1.19E-05 0.000
13 ko04662 B cell receptor signaling pathway 17/667 47/5400 2.23E-05 0.000
14 ko04060* Cytokine-cytokine receptor interaction 39/667 163/5400 2.50E-05 0.000
15 ko03008 Ribosome biogenesis in eukaryotes 20/667 62/5400 3.01E-05 0.000
16 ko03410 Base excision repair 12/667 28/5400 5.29E-05 0.001
17 ko04660* T cell receptor signaling pathway 22/667 78/5400 0.000 0.001
18 ko04380* Osteoclast differentiation 23/667 87/5400 0.000 0.002
19 ko03018 RNA degradation 18/667 61/5400 0.000 0.002
20 ko04115 p53 signaling pathway 16/667 53/5400 0.000 0.004

Note: * also significantly expressed in other organs. Sorted by q-value.

3.3.2. GO Pathway Enrichment

The GO database is the world’s largest source of bio-information on the functions of genes. This knowledge of the genes is a foundation for computational analysis of large-scale molecular biology and genetics experiments in biomedical research. Selective GO pathways were enriched based on the abundance of genes most highly expressed in organs. The number of the selective pathway is listed in Fig. (4) and the pathways of the adrenal gland, brain, colon, duodenum, heart, ileum, kidney, liver, lung, spleen, and stomach are listed in Tables 23-33, respectively. There were 4,432 relatively selective pathways in 11 rat organs. Among them, 971 pathways were involved in two organs, 357 in three organs, 86 in four organs, 21 in five organs, 7 in six organs, and 1 in seven organs. It should be noted that the “selective” pathways are involved in two or more organs based on the enrichment analysis.

Fig. (4).

Fig. (4)

Selective GO enrichment in different organs based on the abundance of genes most highly expressed in organs. Abbreviations: Ad, adrenal gland; Br, brain; Co, colon; Du, duodenum; He, heart; Il, ileum; Ki, kidney; Li, liver; Lu, lung; Sp, spleen; St, stomach.

Table 23.

Top 20 of 122 selective GO pathways in the adrenal gland.

No. GO.ID Term Ontology Significant Annotated p-value q-value
1 GO:0043231* Intracellular membrane-bounded organelle cellular component 621/998 8545/18378 8.00E-25 1.43E-21
2 GO:0005739* Mitochondrion cellular component 178/998 1536/18378 3.50E-23 3.12E-20
3 GO:0044424* Intracellular part cellular component 782/998 11898/18378 5.40E-22 2.85E-19
4 GO:0043227* Membrane-bounded organelle cellular component 686/998 9971/18378 6.40E-22 2.85E-19
5 GO:0044429* Mitochondrial part cellular component 107/998 727/18378 1.50E-21 5.35E-19
6 GO:0043226* Organelle cellular component 743/998 11246/18378 7.60E-20 2.26E-17
7 GO:0005622* Intracellular cellular component 800/998 12452/18378 1.90E-19 4.84E-17
8 GO:0008152* Metabolic process biological process 677/932 10277/17378 7.90E-19 1.18E-14
9 GO:0043229* Intracellular organelle cellular component 690/998 10283/18378 1.20E-18 2.67E-16
10 GO:0005759* Mitochondrial matrix cellular component 52/998 240/18378 4.70E-18 9.31E-16
11 GO:0044237* Cellular metabolic process biological process 611/932 9092/17378 3.00E-17 2.25E-13
12 GO:0034660* ncRNA metabolic process biological process 66/932 406/17378 4.50E-16 2.25E-12
13 GO:0006807* Nitrogen compound metabolic process biological process 417/932 5827/17378 1.80E-13 6.75E-10
14 GO:0044422* Organelle part cellular component 476/998 6775/18378 4.20E-13 7.27E-11
15 GO:0071704* Organic substance metabolic process biological process 621/932 9627/17378 4.60E-13 1.17E-09
16 GO:0034641* Cellular nitrogen compound metabolic process biological process 400/932 5563/17378 4.70E-13 1.17E-09
17 GO:0005737* Cytoplasm cellular component 593/998 8899/18378 5.10E-13 7.27E-11
18 GO:0031974* Membrane-enclosed lumen cellular component 264/998 3238/18378 5.30E-13 7.27E-11
19 GO:0043233* Organelle lumen cellular component 264/998 3238/18378 5.30E-13 7.27E-11
20 GO:0070013* Intracellular organelle lumen cellular component 263/998 3235/18378 8.40E-13 1.07E-10

Note: * also significantly expressed in other organs. Sorted by q-value.

Table 33.

Top 20 of 21 selective GO pathways in the stomach.

No. GO.ID Term Ontology Significant Annotated p-value q-value
1 GO:0007586* Digestion Biological process 20/490 111/17378 3.40E-11 5.10E-07
2 GO:0001696 Gastric acid secretion Biological process 9/490 17/17378 2.10E-10 1.57E-06
3 GO:0055123* Digestive system development Biological process 17/490 128/17378 1.20E-07 0.000
4 GO:0022600 Digestive system process Biological process 14/490 86/17378 1.20E-07 0.000
5 GO:0031016 Pancreas development Biological process 12/490 71/17378 6.20E-07 0.002
6 GO:0004190 Aspartic-type endopeptidase activity Molecular function 7/487 23/16814 2.70E-06 0.006
7 GO:0070001 Aspartic-type peptidase activity Molecular function 7/487 24/16814 3.70E-06 0.006
8 GO:0001228* Transcriptional activator activity, RNA polymerase II transcription regulatory region sequence-specific Molecular function 25/487 315/16814 5.50E-06 0.006
9 GO:0000981* RNA polymerase II transcription factor activity, sequence-specific DNA binding Molecular function 38/487 601/16814 5.80E-06 0.006
10 GO:0030855* Epithelial cell differentiation Biological process 33/490 488/17378 3.50E-06 0.009
11 GO:0046903* Secretion Biological process 49/490 879/17378 4.20E-06 0.009
12 GO:0046717* Acid secretion Biological process 12/490 87/17378 5.70E-06 0.011
13 GO:0031018 Endocrine pancreas development Biological process 8/490 40/17378 1.30E-05 0.021
14 GO:0044765* Single-organism transport Biological process 99/490 2326/17378 1.40E-05 0.021
15 GO:0009888* Tissue development Biological process 69/490 1472/17378 1.80E-05 0.025
16 GO:0048565* Digestive tract development Biological process 13/490 117/17378 2.60E-05 0.032
17 GO:0005882 Intermediate filament Cellular component 15/533 144/18378 1.90E-05 0.034
18 GO:0051050* Positive regulation of transport Biological process 43/490 793/17378 3.20E-05 0.037
19 GO:1903011 Negative regulation of bone development Biological process 4/490 8/17378 4.00E-05 0.043
20 GO:0060428 Lung epithelium development Biological process 7/490 35/17378 4.60E-05 0.046

Note: * also significantly expressed in other organs. Sorted by q-value.

As can be seen from Fig. (4), organs with many selective pathways, like the lung, spleen and brain, indicate that they undertake many complex functions. Conversely, organs with few selective pathways, like the stomach and adrenal glands, indicate their relative sample functions. The results in Fig. (3), is similar to those in Fig. (4).

The top 20 GO pathways are shown in Tables 23-33, and their full lists can be seen in the supplementary data. As for the top 20 GO pathways, the adrenal gland (Table 23), colon (Table 25), and kidney (Table 29) had no real selective pathways, and the brain had the most selective pathways, suggesting that the brain has specific functions (Table 24). According to the results of GO enrichment, the adrenal gland is a hypermetabolic organ because mitochondria in the organ are very active (Table 23); the brain is a neural organ (Table 24), which is well-accepted by scientists; the colon is an immune and metabolic organ (Table 25); the duodenum is mainly an immune organ (Table 26); the heart is also a hypermetabolic organ (Table 27); the ileum is primarily an organ associated with protein synthesis, immune, and digestion (Table 28); the kidney (Table 29) and liver (Table 30) are mainly an organ associated with metabolism; the lung is an organ mainly associated with angiogenesis and blood circulation (Table 31); the spleen is an organ mainly associated with organelle metabolism (Table 32), and the stomach is an organ mainly associated with digestion and glandular secretion (Table 33).

Table 25.

Top 20 of 536 selective GO pathways in the colon.

No. GO.ID Term Ontology Significant Annotated p-value q-value
1 GO:0002376* Immune system process Biological process 153/678 1949/17378 5.70E-18 8.55E-14
2 GO:0031347* Regulation of defense response Biological process 52/678 407/17378 4.10E-14 3.07E-10
3 GO:0002682* Regulation of immune system process Biological process 89/678 1014/17378 3.80E-13 1.31E-09
4 GO:0019221* Cytokine-mediated signaling pathway Biological process 44/678 322/17378 3.80E-13 1.31E-09
5 GO:0045321* Leukocyte activation Biological process 70/678 703/17378 4.60E-13 1.31E-09
6 GO:0006952* Defense response Biological process 93/678 1091/17378 5.70E-13 1.31E-09
7 GO:0001775* Cell activation Biological process 76/678 804/17378 6.10E-13 1.31E-09
8 GO:0042110* T cell activation Biological process 46/678 356/17378 8.50E-13 1.50E-09
9 GO:0080134* Regulation of response to stress Biological process 83/678 927/17378 9.00E-13 1.50E-09
10 GO:0009607* Response to biotic stimulus Biological process 74/678 797/17378 3.10E-12 4.63E-09
11 GO:0009605* Response to external stimulus Biological process 132/678 1856/17378 3.40E-12 4.63E-09
12 GO:0006955* Immune response Biological process 97/678 1208/17378 5.70E-12 7.12E-09
13 GO:0048518* Positive regulation of biological process Biological process 258/678 4587/17378 8.20E-12 9.46E-09
14 GO:0002520* Immune system development Biological process 67/678 706/17378 1.40E-11 1.32E-08
15 GO:0035556* Intracellular signal transduction Biological process 139/678 2034/17378 1.50E-11 1.32E-08
16 GO:0071345* Cellular response to cytokine stimulus Biological process 55/678 518/17378 1.50E-11 1.32E-08
17 GO:0043207* Response to external biotic stimulus Biological process 70/678 757/17378 1.50E-11 1.32E-08
18 GO:0007159* Leukocyte cell-cell adhesion Biological process 37/678 268/17378 2.20E-11 1.83E-08
19 GO:0031349* Positive regulation of defense response Biological process 34/678 231/17378 2.40E-11 1.89E-08
20 GO:0046649* Lymphocyte activation Biological process 60/678 604/17378 2.70E-11 1.91E-08

Note: * also significantly expressed in other organs. Sorted by q-value.

Table 29.

Top 20 of 206 selective GO pathways in the kidney.

No. GO.ID Term Ontology Significant Annotated p-value q-value
1 GO:0003824* Catalytic activity Molecular function 571/1203 5604/16814 4.10E-26 1.69E-22
2 GO:0044281* Small molecule metabolic process Biological process 218/1237 1566/17378 2.20E-23 3.30E-19
3 GO:0005739* Mitochondrion Cellular component 210/1275 1536/18378 8.60E-23 1.53E-19
4 GO:0006082* Organic acid metabolic process Biological process 136/1237 806/17378 6.90E-22 5.17E-18
5 GO:0019752* Carboxylic acid metabolic process Biological process 128/1237 740/17378 1.40E-21 7.00E-18
6 GO:0044710* Single-organism metabolic process Biological process 378/1237 3483/17378 4.80E-20 1.80E-16
7 GO:0070062* Extracellular exosome Cellular component 253/1275 2097/18378 7.70E-20 6.86E-17
8 GO:0043436* Oxoacid metabolic process Biological process 130/1237 793/17378 8.00E-20 2.40E-16
9 GO:0055114* Oxidation-reduction process Biological process 148/1237 967/17378 1.30E-19 3.25E-16
10 GO:1903561* Extracellular vesicle Cellular component 253/1275 2110/18378 1.80E-19 1.02E-16
11 GO:0043230* Extracellular organelle Cellular component 253/1275 2114/18378 2.30E-19 1.02E-16
12 GO:1901605* Alpha-amino acid metabolic process Biological process 50/1237 175/17378 5.30E-18 1.14E-14
13 GO:0016491* Oxidoreductase activity Molecular function 123/1203 775/16814 1.70E-17 3.50E-14
14 GO:0006520* Cellular amino acid metabolic process Biological process 59/1237 247/17378 6.30E-17 1.18E-13
15 GO:0044282* Small molecule catabolic process Biological process 54/1237 231/17378 3.60E-15 6.00E-12
16 GO:0016054* Organic acid catabolic process Biological process 45/1237 169/17378 4.50E-15 6.13E-12
17 GO:0046395* Carboxylic acid catabolic process Biological process 45/1237 169/17378 4.50E-15 6.13E-12
18 GO:0031982* Vesicle Cellular component 318/1275 3084/18378 9.50E-15 3.39E-12
19 GO:0048037* Cofactor binding Molecular function 59/1203 276/16814 1.70E-14 2.33E-11
20 GO:1901565* Organonitrogen compound catabolic process Biological process 47/1237 222/17378 9.80E-12 1.22E-08

Note: * also significantly expressed in other organs. Sorted by q-value.

Table 24.

Top 20 of 897 selective GO pathways in the brain.

No. GO.ID Term Ontology Significant Annotated p-value q-value
1 GO:0097458 Neuron part Cellular component 569/3717 1181/18378 1.00E-30 8.49E-29
2 GO:0045202 Synapse Cellular component 409/3717 718/18378 1.00E-30 8.49E-29
3 GO:0044456 Synapse part Cellular component 354/3717 593/18378 1.00E-30 8.49E-29
4 GO:0043005 Neuron projection Cellular component 428/3717 875/18378 1.00E-30 8.49E-29
5 GO:0120025 Plasma membrane-bounded cell projection Cellular component 565/3717 1477/18378 1.00E-30 8.49E-29
6 GO:0098793 Presynapse Cellular component 193/3717 302/18378 1.00E-30 8.49E-29
7 GO:0036477 Somatodendritic compartment Cellular component 311/3717 639/18378 1.00E-30 8.49E-29
8 GO:0042995* Cell projection Cellular component 581/3717 1558/18378 1.00E-30 8.49E-29
9 GO:0097060 Synaptic membrane Cellular component 146/3717 208/18378 1.00E-30 8.49E-29
10 GO:0098794 Postsynapse Cellular component 204/3717 354/18378 1.00E-30 8.49E-29
11 GO:0030424 Axon Cellular component 203/3717 360/18378 1.00E-30 8.49E-29
12 GO:0030425 Dendrite Cellular component 222/3717 436/18378 1.00E-30 8.49E-29
13 GO:0044463* Cell projection part Cellular component 349/3717 860/18378 1.00E-30 8.49E-29
14 GO:0043025 Neuronal cell body Cellular component 215/3717 437/18378 1.00E-30 8.49E-29
15 GO:0045211 Postsynaptic membrane Cellular component 108/3717 153/18378 1.00E-30 8.49E-29
16 GO:0044297 Cell body Cellular component 232/3717 497/18378 1.00E-30 8.49E-29
17 GO:0098984 Neuron to neuron synapse Cellular component 110/3717 181/18378 1.00E-30 8.49E-29
18 GO:0014069 Postsynaptic density Cellular component 107/3717 176/18378 1.00E-30 8.49E-29
19 GO:0032279 Asymmetric synapse Cellular component 108/3717 179/18378 1.00E-30 8.49E-29
20 GO:0099572 Postsynaptic specialization Cellular component 107/3717 177/18378 1.00E-30 8.49E-29

Note: * also significantly expressed in other organs. Sorted by q-value.

Table 26.

Top 20 of 171 selective GO pathways in the duodenum.

No. GO.ID Term Ontology Significant Annotated p-value q-value
1 GO:0042571 Immunoglobulin complex, circulating Cellular component 74/933 98/18378 1.00E-30 2.55E-28
2 GO:0019814 Immunoglobulin complex Cellular component 74/933 102/18378 1.00E-30 2.55E-28
3 GO:0072562* Blood microparticle Cellular component 78/933 173/18378 1.00E-30 2.55E-28
4 GO:0005615* Extracellular space Cellular component 214/933 1396/18378 1.00E-30 2.55E-28
5 GO:0044421* Extracellular region part Cellular component 335/933 3289/18378 1.00E-30 2.55E-28
6 GO:0005576* Extracellular region Cellular component 357/933 3681/18378 1.00E-30 2.55E-28
7 GO:0009897* External side of plasma membrane Cellular component 77/933 300/18378 1.00E-30 2.55E-28
8 GO:0006910 Phagocytosis, recognition Biological process 74/897 108/17378 1.00E-30 5.00E-28
9 GO:0006958 Complement activation, classical pathway Biological process 73/897 107/17378 1.00E-30 5.00E-28
10 GO:0002455 Humoral immune response mediated by circulating immunoglobulin Biological process 73/897 115/17378 1.00E-30 5.00E-28
11 GO:0006911 Phagocytosis, engulfment Biological process 74/897 120/17378 1.00E-30 5.00E-28
12 GO:0099024 Plasma membrane invagination Biological process 76/897 128/17378 1.00E-30 5.00E-28
13 GO:0010324 Membrane invagination Biological process 76/897 134/17378 1.00E-30 5.00E-28
14 GO:0006956* Complement activation Biological process 73/897 132/17378 1.00E-30 5.00E-28
15 GO:0050853* B cell receptor signaling pathway Biological process 73/897 132/17378 1.00E-30 5.00E-28
16 GO:0072376 Protein activation cascade Biological process 73/897 143/17378 1.00E-30 5.00E-28
17 GO:0008037 Cell recognition Biological process 80/897 182/17378 1.00E-30 5.00E-28
18 GO:0050871* Positive regulation of B cell activation Biological process 75/897 163/17378 1.00E-30 5.00E-28
19 GO:0002377* Immunoglobulin production Biological process 86/897 224/17378 1.00E-30 5.00E-28
20 GO:0006959* Humoral immune response Biological process 78/897 188/17378 1.00E-30 5.00E-28

Note: * also significantly expressed in other organs. Sorted by q-value.

Table 27.

Top 20 of 554 selective GO pathways in the heart.

No. GO.ID Term Ontology Significant Annotated p-value q-value
1 GO:0005739* Mitochondrion Cellular component 348/1048 1536/18378 1.00E-30 6.85E-29
2 GO:0044429* Mitochondrial part Cellular component 230/1048 727/18378 1.00E-30 6.85E-29
3 GO:0005743* Mitochondrial inner membrane Cellular component 141/1048 367/18378 1.00E-30 6.85E-29
4 GO:0031966* Mitochondrial membrane Cellular component 164/1048 508/18378 1.00E-30 6.85E-29
5 GO:0005740* Mitochondrial envelope Cellular component 167/1048 546/18378 1.00E-30 6.85E-29
6 GO:0098800 Inner mitochondrial membrane protein complex Cellular component 85/1048 125/18378 1.00E-30 6.85E-29
7 GO:0019866* Organelle inner membrane Cellular component 142/1048 409/18378 1.00E-30 6.85E-29
8 GO:0098798 Mitochondrial protein complex Cellular component 89/1048 144/18378 1.00E-30 6.85E-29
9 GO:0044455* Mitochondrial membrane part Cellular component 101/1048 195/18378 1.00E-30 6.85E-29
10 GO:0031967* Organelle envelope Cellular component 182/1048 867/18378 1.00E-30 6.85E-29
11 GO:0031975* Envelope Cellular component 182/1048 869/18378 1.00E-30 6.85E-29
12 GO:0070469 Respiratory chain Cellular component 65/1048 100/18378 1.00E-30 6.85E-29
13 GO:0098803 Respiratory chain complex Cellular component 59/1048 85/18378 1.00E-30 6.85E-29
14 GO:0005746 Mitochondrial respiratory chain Cellular component 58/1048 86/18378 1.00E-30 6.85E-29
15 GO:0030016 Myofibril Cellular component 76/1048 161/18378 1.00E-30 6.85E-29
16 GO:0043292 Contractile fiber Cellular component 76/1048 171/18378 1.00E-30 6.85E-29
17 GO:0030017 Sarcomere Cellular component 69/1048 142/18378 1.00E-30 6.85E-29
18 GO:0044449 Contractile fiber part Cellular component 71/1048 154/18378 1.00E-30 6.85E-29
19 GO:1990204 Oxidoreductase complex Cellular component 59/1048 105/18378 1.00E-30 6.85E-29
20 GO:0005759* Mitochondrial matrix Cellular component 79/1048 240/18378 1.00E-30 6.85E-29

Note: * also significantly expressed in other organs. Sorted by q-value.

Table 28.

Top 20 of 141 selective GO pathways in the ileum.

No. GO.ID Term Ontology Significant Annotated p-value q-value
1 GO:1990904* Ribonucleoprotein complex Cellular component 144/1063 1129/18378 5.60E-20 9.98E-17
2 GO:0030529* Intracellular ribonucleoprotein complex Cellular component 143/1063 1128/18378 1.30E-19 1.16E-16
3 GO:0003735* Structural constituent of ribosome Molecular function 80/929 507/16814 9.90E-18 4.07E-14
4 GO:0005840* Ribosome Cellular component 86/1063 587/18378 1.10E-15 6.53E-13
5 GO:0005198* Structural molecule activity Molecular function 109/929 898/16814 3.30E-15 6.79E-12
6 GO:0042611 MHC protein complex Cellular component 16/1063 25/18378 1.80E-14 8.02E-12
7 GO:0019882 Antigen processing and presentation Biological process 27/976 91/17378 3.70E-13 5.55E-09
8 GO:0043604* Amide biosynthetic process Biological process 103/976 956/17378 9.30E-11 5.00E-07
9 GO:0006412* Translation Biological process 97/976 881/17378 1.00E-10 5.00E-07
10 GO:0022626* Cytosolic ribosome Cellular component 53/1063 350/18378 1.10E-10 3.92E-08
11 GO:0043603* Cellular amide metabolic process Biological process 113/976 1100/17378 1.90E-10 5.50E-07
12 GO:0006518* Peptide metabolic process Biological process 104/976 982/17378 2.00E-10 5.50E-07
13 GO:0043043* Peptide biosynthetic process Biological process 97/976 893/17378 2.20E-10 5.50E-07
14 GO:0048002 Antigen processing and presentation of peptide antigen Biological process 17/976 49/17378 5.70E-10 1.22E-06
15 GO:0022627* Cytosolic small ribosomal subunit Cellular component 26/1063 121/18378 4.70E-09 1.34E-06
16 GO:0044391* Ribosomal subunit Cellular component 58/1063 446/18378 5.80E-09 1.34E-06
17 GO:0015935* Small ribosomal subunit Cellular component 30/1063 158/18378 7.00E-09 1.34E-06
18 GO:0044445* Cytosolic part Cellular component 59/1063 460/18378 7.20E-09 1.34E-06
19 GO:0005903* Brush border Cellular component 23/1063 99/18378 7.50E-09 1.34E-06
20 GO:0019538* Protein metabolic process Biological process 372/976 5206/17378 1.20E-08 2.25E-05

Note: * also significantly expressed in other organs. Sorted by q-value.

Table 30.

Top 20 of 670 selective GO pathways in the liver.

No. GO.ID Term Ontology Significant Annotated p-value q-value
1 GO:0044710* Single-organism metabolic process Biological process 297/630 3483/17378 1.00E-30 1.50E-27
2 GO:0043436* Oxoacid metabolic process Biological process 131/630 793/17378 1.00E-30 1.50E-27
3 GO:0006082* Organic acid metabolic process Biological process 132/630 806/17378 1.00E-30 1.50E-27
4 GO:0019752* Carboxylic acid metabolic process Biological process 125/630 740/17378 1.00E-30 1.50E-27
5 GO:0044281* Small molecule metabolic process Biological process 181/630 1566/17378 1.00E-30 1.50E-27
6 GO:0055114* Oxidation-reduction process Biological process 125/630 967/17378 1.00E-30 1.50E-27
7 GO:0006629* Lipid metabolic process Biological process 128/630 1021/17378 1.00E-30 1.50E-27
8 GO:0044712* Single-organism catabolic process Biological process 102/630 695/17378 1.00E-30 1.50E-27
9 GO:0044282* Small molecule catabolic process Biological process 57/630 231/17378 1.00E-30 1.50E-27
10 GO:0032787* Monocarboxylic acid metabolic process Biological process 77/630 447/17378 1.00E-30 1.50E-27
11 GO:0005615* Extracellular space Cellular component 146/634 1396/18378 1.00E-30 1.78E-27
12 GO:0016491* Oxidoreductase activity Molecular function 99/614 775/16814 1.40E-28 5.76E-25
13 GO:0003824* Catalytic activity Molecular function 334/614 5604/16814 7.20E-28 1.48E-24
14 GO:0008202 Steroid metabolic process Biological process 50/630 204/17378 1.10E-27 1.50E-24
15 GO:0016054* Organic acid catabolic process Biological process 44/630 169/17378 1.20E-25 1.38E-22
16 GO:0046395* Carboxylic acid catabolic process Biological process 44/630 169/17378 1.20E-25 1.38E-22
17 GO:0044255* Cellular lipid metabolic process Biological process 92/630 774/17378 2.10E-24 2.25E-21
18 GO:0005576* Extracellular region Cellular component 234/634 3681/18378 8.70E-24 7.75E-21
19 GO:0044421* Extracellular region part Cellular component 214/634 3289/18378 1.20E-22 7.13E-20
20 GO:1901605* Alpha-amino acid metabolic process Biological process 41/630 175/17378 4.30E-22 4.30E-19

Note: * also significantly expressed in other organs. Sorted by q-value.

Table 31.

Top 20 of 1389 selective GO pathways in the lung.

No. GO.ID Term Ontology Significant Annotated p-value q-value
1 GO:0072359* Circulatory system development Biological process 300/2858 814/17378 1.00E-30 3.49E-28
2 GO:0072358 Cardiovascular system development Biological process 216/2858 515/17378 1.00E-30 3.49E-28
3 GO:0001944 Vasculature development Biological process 213/2858 506/17378 1.00E-30 3.49E-28
4 GO:0048856* Anatomical structure development Biological process 1053/2858 4553/17378 1.00E-30 3.49E-28
5 GO:0044767* Single-organism developmental process Biological process 1109/2858 4861/17378 1.00E-30 3.49E-28
6 GO:0032502* Developmental process Biological process 1117/2858 4909/17378 1.00E-30 3.49E-28
7 GO:0001568 Blood vessel development Biological process 204/2858 487/17378 1.00E-30 3.49E-28
8 GO:0007275* Multicellular organism development Biological process 969/2858 4155/17378 1.00E-30 3.49E-28
9 GO:0009653* Anatomical structure morphogenesis Biological process 550/2858 2009/17378 1.00E-30 3.49E-28
10 GO:0010468* Regulation of gene expression Biological process 828/2858 3414/17378 1.00E-30 3.49E-28
11 GO:0051252* Regulation of RNA metabolic process Biological process 725/2858 2910/17378 1.00E-30 3.49E-28
12 GO:0048646 Anatomical structure formation involved in morphogenesis Biological process 281/2858 814/17378 1.00E-30 3.49E-28
13 GO:0031323* Regulation of cellular metabolic process Biological process 1089/2858 4879/17378 1.00E-30 3.49E-28
14 GO:0060255* Regulation of macromolecule metabolic process Biological process 1074/2858 4798/17378 1.00E-30 3.49E-28
15 GO:0044707* Single-multicellular organism process Biological process 1102/2858 4954/17378 1.00E-30 3.49E-28
16 GO:2001141* Regulation of RNA biosynthetic process Biological process 699/2858 2797/17378 1.00E-30 3.49E-28
17 GO:1903506* Regulation of nucleic acid-templated transcription Biological process 698/2858 2792/17378 1.00E-30 3.49E-28
18 GO:0019222* Regulation of metabolic process Biological process 1141/2858 5184/17378 1.00E-30 3.49E-28
19 GO:0006355* Regulation of transcription, DNA-templated Biological process 690/2858 2762/17378 1.00E-30 3.49E-28
20 GO:0019219* Regulation of nucleobase-containing compound metabolic process Biological process 782/2858 3239/17378 1.00E-30 3.49E-28

Note: * also significantly expressed in other organs. Sorted by q-value.

Table 32.

Top 20 of 1168 selective GO pathways in the spleen.

No. GO.ID Term Ontology Significant Annotated p-value q-value
1 GO:0044428* Nuclear part Cellular component 851/2479 3315/18378 1.00E-30 7.43E-29
2 GO:0005634* Nucleus Cellular component 1216/2479 5641/18378 1.00E-30 7.43E-29
3 GO:0031981* Nuclear lumen Cellular component 764/2479 2915/18378 1.00E-30 7.43E-29
4 GO:0005694* Chromosome Cellular component 327/2479 812/18378 1.00E-30 7.43E-29
5 GO:0044427* Chromosomal part Cellular component 297/2479 738/18378 1.00E-30 7.43E-29
6 GO:0070013* Intracellular organelle lumen Cellular component 781/2479 3235/18378 1.00E-30 7.43E-29
7 GO:0031974* Membrane-enclosed lumen Cellular component 781/2479 3238/18378 1.00E-30 7.43E-29
8 GO:0043233* Organelle lumen Cellular component 781/2479 3238/18378 1.00E-30 7.43E-29
9 GO:0043228* Non-membrane-bounded organelle Cellular component 814/2479 3656/18378 1.00E-30 7.43E-29
10 GO:0043232* Intracellular non-membrane-bounded organelle Cellular component 814/2479 3656/18378 1.00E-30 7.43E-29
11 GO:0005654* Nucleoplasm Cellular component 554/2479 2197/18378 1.00E-30 7.43E-29
12 GO:0098687 Chromosomal region Cellular component 136/2479 250/18378 1.00E-30 7.43E-29
13 GO:0032991* Macromolecular complex Cellular component 940/2479 4830/18378 1.00E-30 7.43E-29
14 GO:0000228 Nuclear chromosome Cellular component 177/2479 457/18378 1.00E-30 7.43E-29
15 GO:0044446* Intracellular organelle part Cellular component 1193/2479 6591/18378 1.00E-30 7.43E-29
16 GO:0044454 Nuclear chromosome part Cellular component 167/2479 429/18378 1.00E-30 7.43E-29
17 GO:0044422* Organelle part Cellular component 1204/2479 6775/18378 1.00E-30 7.43E-29
18 GO:0000775 Chromosome, centromeric region Cellular component 83/2479 142/18378 1.00E-30 7.43E-29
19 GO:0005622* Intracellular Cellular component 1939/2479 12452/18378 1.00E-30 7.43E-29
20 GO:0000793 Condensed chromosome Cellular component 82/2479 145/18378 1.00E-30 7.43E-29

Note: * also significantly expressed in other organs. Sorted by q-value.

3.4. Genes without Description but Selectively Expressed

Apart from the genes whose function is described, there were 123 genes without a clear description but selectively expressed in 11 organs (Fig. 5). From the results of Fig. (5), most genes without description were selectively expressed in the adrenal gland and brain. Instead, there were fewer genes without description in rat gastrointestinal tracts, including stomach, duodenum, ileum, and colon. The top 20 genes without description in the adrenal gland, brain, colon, duodenum, heart, ileum, kidney, liver, lung, spleen, and stomach were listed in Tables 34-44, respectively; and their full lists can be seen in the supplementary data. Because the genes were not described but selectively expressed in the organs, their products and functions need further investigation. Given the low number of genes selectively expressed in the adrenal gland, the high number of undescribed high expression of genes in this organ suggests that the organ may be less studied.

Fig. (5).

Fig. (5)

There were 123 Genes without description but selectively expressed in different organs based on their abundance. Abbreviations: Ad, adrenal gland; Br, brain; Co, colon; Du, duodenum; He, heart; Il, ileum; Ki, kidney; Li, liver; Lu, lung; Sp, spleen; St, stomach.

Table 34.

The top 20/32 genes were not described but selectively expressed in the adrenal glands based on their abundance (n = 3).

No. Gene ID Gene Name Median Organ FPKM p-value q-value Mean /total
Mean Total
1 ENSRNOG00000041608 AC123095.1 St 32.5 45.5 2.39E-05 2.00E-03 0.716
2 ENSRNOG00000055956 AABR07015078.1 St 103.8 141.0 3.62E-05 2.47E-03 0.736
3 ENSRNOG00000030291 Rn50_10_0698.6 St 871.4 1199.5 4.14E-05 2.57E-03 0.727
4 ENSRNOG00000060657 AABR07000404.1 St 14.2 19.1 1.05E-04 4.21E-03 0.742
5 ENSRNOG00000029145 AY172581.2 St 462.8 594.1 1.68E-04 5.34E-03 0.779
6 ENSRNOG00000057514 AABR07015080.1 St 26.2 35.7 1.79E-04 5.51E-03 0.734
7 ENSRNOG00000057811 AABR07015055.2 St 18.8 25.1 2.46E-04 6.47E-03 0.750
8 ENSRNOG00000055836 AABR07000402.1 St 30.7 42.9 3.34E-04 7.56E-03 0.717
9 ENSRNOG00000046600 AABR07015066.1 St 73.6 100.6 3.88E-04 8.16E-03 0.732
10 ENSRNOG00000055323 AABR07063421.1 St 33.9 47.6 4.49E-04 8.79E-03 0.712
11 ENSRNOG00000046081 AABR07015079.1 St 38.8 55.2 5.83E-04 1.00E-02 0.703
12 ENSRNOG00000047991 AABR07072283.1 St 125.3 143.0 1.02E-03 1.34E-02 0.876
13 ENSRNOG00000053717 Metazoa_SRP Il 121.7 171.4 1.69E-03 1.68E-02 0.710
14 ENSRNOG00000046768 AC135454.2 St 13.2 14.2 1.62E-03 1.70E-02 0.929
15 ENSRNOG00000056945 LOC102549408 Sp 22.1 26.9 1.97E-03 1.88E-02 0.820
16 ENSRNOG00000049380 Rn50_11_0375.8 Du 55.9 68.7 2.24E-03 1.99E-02 0.814
17 ENSRNOG00000046106 rno-mir-351-1 St 6.4 6.4 2.49E-03 2.11E-02 1.000
18 ENSRNOG00000055947 7SK Du 24.6 30.8 2.63E-03 2.14E-02 0.800
19 ENSRNOG00000048598 AABR07037925.1 St 84.9 95.4 2.55E-03 2.14E-02 0.889
20 ENSRNOG00000053888 5_8S_rRNA St 11.8 13.7 2.75E-03 2.23E-02 0.858

Note: Sorted by q-value. Du, duodenum; Il, ileum; Sp, spleen; St, stomach.

Table 44.

Genes were not described but selectively expressed in the stomach based on their abundance (n = 3).

No. Gene ID Gene Name Median Organ FPKM p-value q-value Mean/ total
Mean Total
1 ENSRNOG00000060525 AABR07007717.3 Du 8.9 12.7 5.70E-05 2.11E-03 0.703
2 ENSRNOG00000062012 Rn60_20_0037.1 Ad 35.3 35.3 6.37E-03 3.46E-02 1.000

Note: Sorted by q-value. Ad, adrenal gland; Du, duodenum.

4. DISCUSSION

Screening selectively expressed genes in organs is not only a tough task but also meaningful work because the results of the work will provide useful clues and even evidence for scientists to unveil the mechanism behind the overall dysfunction and symptoms. At least, we can obtain the putative organic markers for evaluating organic injury. There were good examples of some proteins selectively expressed in organs that were used as disease markers [8, 10-12] or used as therapeutic targets like trastuzumab on HER2 to treat breast cancer [167]. However, many selective genes have still not been revealed.

The present study screened out 1,406 genes selectively expressed in 11 rat organs, among which, 1,283 genes’ function was described, and 123 of which still need to be described in the near future. Some of the genes’ function was confirmed in the organs that were noted in Tables 1-11, but a good portion of them or the relationship between their function and the organs was not addressed. The new findings are useful to unveil the mechanism of their organic functions. Unfortunately, as for the selective genes in organs mentioned in the introduction, only troponin [10] was proved to be selective by the present study, and NeuN in the brain [8], GPT in the liver [11], and NGAL in the kidney [12] were not included in the present list of the selective genes. After consulting the FPKM values, it is exactly that the FPKM of NeuN in the brain was the highest, but not significant. The relative neuronal marker was further proved by recent work [9]. The highest GPT (GPT2) in the liver was significant, but the level of expression was not dominant (only about 45% of the total). Of course, if the criterion of selective genes was lowered, more genes would be included in the selective gene list, namely, in the list of putative organic markers. Phosphodiesterase 5 (PDE5a), an enzyme associated with angiectasis, is another similar example. PDE5a was verified to be the most highly expressed gene in the lung, but not included in the selective gene list (Table 9), supporting PDE5 inhibitors’ pharmacological effect on pulmonary arterial hypertension [168, 169].

The selective genes and their products can be used as physiological or disease markers. If a cell is injured, the selective gene’s product normally existing in its cytoplasm will be released to the blood. Based on the principle, some injury markers like serum Myl3 protein for heart injury [170] were screened out and verified by the present study. Theoretically, products from selective genes can be used as disease markers. However, it should be noted that because of some genes expressed in rats (e.g., Uox in the liver) [171], but not in humans, the fact that the products from the selective genes used as disease markers are only advisory, needing further verification.

The functional pathways of an organ enriched by the highest-expressed genes were largely supported by the known understanding. However, there are still some interesting functions that were not focused on. For example, KEGG pathways (Tables 12-22) like ko00061 (fatty acid biosynthesis) in the adrenal gland, ko04911 (insulin secretion) in the brain, ko00280 (Valine, leucine, and isoleucine degradation) in the heart and kidney, and ko04360 (axon guidance) in the lung were seldom paid attention to by scientists. Similar results would be obtained in the results of GO pathways (Table 23-33). The unpopular organic functional pathways enriched by the present study would open a new window to make insight into their mechanism. Especially the adrenal glands may be an organ with few basic researches.

Though the selective genes and the interesting genes only existed in one organ, the organic pathways including KEGG (Tables 12-22) and GO (Tables 23-33) pathways, enriched by them could exist in two or more organs. Since a pathway often involves many proteins, it is theoretically different for the real functions of the same selective pathway enriched by different selective genes. The same pathway is enriched in different organs with different profiles. Anyway, the functions are different from organ to organ, although they share some similarities at pathway levels.

CONCLUSION

In the end, because there were no standard criteria ready to evaluate a gene's selectivity, the present study used the dominant portion of FPKM value and statistical analysis. If the FPKM value of a gene in an organ accounted for 70% of the total values of all the organs concerned, the gene was assumed as the selective gene in the organ after excluding genes with low abundance. If the criterion were lowered, the list of the selective genes would be lengthened. On the other hand, the selective genes screened out by the present study were only based on the results of 11 organs in male rats, and some selective genes in other organs or female rats were neglected or missed. Moreover, the weights of the organs were not taken into account in the present study. Considering that the genome of rats has approximately 85% similarity with that of humans, this study provides a useful exploration of human organic markers and organ function, though the selective genes, the putative markers, and the functional pathways suggested are only advisory and worthy of further investigation.

Table 35.

The top 20/27 genes were not described but selectively expressed in the brain based on their abundance (n = 3).

No. Gene ID Gene Name Median Organ FPKM p-value q-value Mean/ total
Mean Total
1 ENSRNOG00000047491 AABR07037520.1 St 53.6 59.3 6.32E-07 3.22E-04 0.905
2 ENSRNOG00000051341 Rn50_X_0635.2 Co 28.1 35.5 3.05E-06 5.69E-04 0.792
3 ENSRNOG00000054414 AABR07043276.1 Il 23.4 28.2 4.13E-06 8.22E-04 0.831
4 ENSRNOG00000060837 AC132752.2 Il 58.1 76.0 1.22E-05 1.06E-03 0.764
5 ENSRNOG00000003025 Rn50_X_0749.3 Ad 48.1 52.7 4.53E-05 2.54E-03 0.914
6 ENSRNOG00000060863 AABR07017145.1 Sp 50.4 62.3 5.12E-05 2.92E-03 0.810
7 ENSRNOG00000060211 AABR07058699.2 Co 31.8 36.6 1.24E-04 4.36E-03 0.869
8 ENSRNOG00000054809 AABR07026032.1 Lu 8.5 8.9 1.34E-04 4.74E-03 0.954
9 ENSRNOG00000038087 AC110846.1 Li 7.7 10.3 4.35E-04 5.50E-03 0.746
10 ENSRNOG00000058047 AABR07000733.1 Il 10.3 11.2 2.19E-04 5.93E-03 0.918
11 ENSRNOG00000022286 Rn50_X_0746.6 Ad 16.9 20.2 2.85E-04 6.70E-03 0.834
12 ENSRNOG00000022267 Rn50_X_0747.1 Il 50.2 60.8 5.73E-04 9.89E-03 0.827
13 ENSRNOG00000059081 AABR07026032.3 Co 47.8 49.1 6.06E-04 1.02E-02 0.974
14 ENSRNOG00000054155 Rn50_5_1638.1 Ad 10.7 10.9 6.29E-04 1.04E-02 0.983
15 ENSRNOG00000052831 AABR07040629.1 Co 31.1 35.4 1.67E-03 1.72E-02 0.879
16 ENSRNOG00000049802 AABR07031533.1 Ki 36.4 37.0 2.35E-03 2.05E-02 0.984
17 ENSRNOG00000002734 AABR07042077.1 Il 8.2 8.4 2.83E-03 2.26E-02 0.984
18 ENSRNOG00000054121 AABR07061178.1 Du 21.5 22.4 4.28E-03 2.80E-02 0.960
19 ENSRNOG00000060858 AABR07043711.1 Ki 12.4 13.3 4.82E-03 2.95E-02 0.934
20 ENSRNOG00000058276 AABR07043200.1 Sp 7.5 8.5 5.24E-03 3.12E-02 0.887

Note: Sorted by q-value. Ad, adrenal gland; Co, colon; Du, duodenum; Il, ileum; Ki, kidney; Li, liver; Lu, lung; Sp, spleen; St, stomach.

Table 36.

Genes were not described but selectively expressed in the colon based on their abundance (n = 3).

No. Gene ID Gene Name Median Organ FPKM p-value q-value Mean/ total
Mean Total
1 ENSRNOG00000062185 Rn60_20_0141.5 Ad 16.4 19.8 1.68E-05 1.68E-03 0.828
2 ENSRNOG00000056727 AABR07057353.2 St 11.5 11.7 4.92E-04 9.21E-03 0.979
3 ENSRNOG00000038598 AABR07032503.1 Ad 10.8 13.0 6.59E-03 3.52E-02 0.827

Note: Sorted by q-value. Ad, adrenal gland; St, stomach.

Table 37.

Genes were not described but selectively expressed in the duodenum based on their abundance (n = 3).

No. Gene ID Gene Name Median Organ FPKM p-value q-value Mean/ total
Mean Total
1 ENSRNOG00000055064 LOC102551636 Ki 415.4 557.4 5.88E-06 9.90E-04 0.745
2 ENSRNOG00000056733 AABR07004539.1 Ad 114.7 122.9 1.02E-03 1.33E-02 0.933
3 ENSRNOG00000058562 AABR07065651.7 Br 52.1 73.9 7.41E-03 3.74E-02 0.705

Note: Sorted by q-value. Ad, adrenal gland; Br, brain; Ki, kidney.

Table 38.

Genes were not described but selectively expressed in the heart based on their abundance (n = 3).

No. Gene ID Gene Name Median Organ FPKM p-value q-value Mean/ total
Mean Total
1 ENSRNOG00000023227 AABR07052585.2 Li 745.4 754.6 6.97E-07 3.41E-04 0.988
2 ENSRNOG00000043057 AABR07025284.1 Il 18.5 20.0 1.58E-06 5.10E-04 0.924
3 ENSRNOG00000052518 AABR07025387.1 Du 26.7 33.3 2.28E-05 1.89E-03 0.801
4 ENSRNOG00000048644 AC115371.1 St 13.2 13.6 1.22E-04 4.56E-03 0.970
5 ENSRNOG00000046133 LOC102553613 Du 30.7 37.8 1.67E-04 4.59E-03 0.811
6 ENSRNOG00000052389 AABR07031489.1 Co 8.9 9.9 3.03E-04 7.12E-03 0.902
7 ENSRNOG00000055328 AABR07017268.1 Ki 10.3 11.7 8.42E-04 1.20E-02 0.881
8 ENSRNOG00000060690 AABR07052523.2 Ad 8.1 8.1 1.40E-03 1.57E-02 1.000
9 ENSRNOG00000046229 AC130940.1 St 11.9 12.7 2.82E-03 2.26E-02 0.935
10 ENSRNOG00000058414 LOC103690078 Ad 5.6 5.6 1.13E-02 4.71E-02 0.992

Note: Sorted by q-value. Ad, adrenal gland; Co, colon; Du, duodenum; Il, ileum; Ki, kidney; Li, liver; St, stomach.

Table 39.

Genes were not described but selectively expressed in the ileum based on their abundance (n = 3).

No. Gene ID Gene Name Median Organ FPKM p-value q-value Mean/ total
Mean Total
1 ENSRNOG00000051194 LOC108352134 Ad 22.7 30.7 4.35E-03 2.83E-02 0.739
2 ENSRNOG00000051320 Rn50_7_1164.3 Lu 22.0 25.6 4.74E-03 2.95E-02 0.861

Note: Sorted by q-value. Ad, adrenal gland; Lu, lung.

Table 40.

Genes were not described but selectively expressed in the kidney based on their abundance (n = 3).

No. Gene ID Gene Name Median Organ FPKM p-value q-value Mean/ total
Mean Total
1 ENSRNOG00000056396 AABR07006120.1 Ad 29.7 29.7 1.76E-06 5.42E-04 1.000
2 ENSRNOG00000054801 AABR07057997.1 Br 8.2 8.9 2.50E-06 6.28E-04 0.926
3 ENSRNOG00000051964 LOC103691699 St 67.9 75.7 6.31E-06 9.80E-04 0.897
4 ENSRNOG00000054733 LOC103690137 He 10.9 14.5 1.63E-05 1.11E-03 0.756
5 ENSRNOG00000061754 LOC102555924 Sp 5.5 7.2 1.78E-05 1.36E-03 0.762
6 ENSRNOG00000057101 AABR07050652.1 Sp 15.5 20.5 4.17E-05 2.47E-03 0.759
7 ENSRNOG00000057904 LOC102554608 Ad 64.2 64.2 2.14E-04 6.03E-03 1.000
8 ENSRNOG00000061966 Rn60_1_2220.2 Ad 15.2 17.1 2.46E-04 6.48E-03 0.891
9 ENSRNOG00000061127 AABR07057844.2 He 8.8 9.4 2.89E-04 6.98E-03 0.936
10 ENSRNOG00000061436 AABR07026778.1 Ad 27.7 27.8 4.18E-04 8.48E-03 0.997
11 ENSRNOG00000059212 AABR07025303.1 Lu 14.2 15.9 6.33E-04 1.03E-02 0.895
12 ENSRNOG00000053953 AABR07016672.1 Ad 6.9 6.9 9.28E-04 1.27E-02 1.000
13 ENSRNOG00000057369 AABR07027240.1 Ad 7.8 7.8 1.00E-03 1.32E-02 0.997
14 ENSRNOG00000059314 AABR07013477.2 Ad 16.7 16.8 1.14E-03 1.41E-02 0.994
15 ENSRNOG00000046343 - Ad 47.6 57.0 1.23E-03 1.47E-02 0.835
16 ENSRNOG00000058847 AABR07044001.4 Br 10.6 14.9 1.84E-03 1.80E-02 0.710
17 ENSRNOG00000058611 AABR07027137.1 Lu 14.2 19.6 9.08E-03 4.14E-02 0.723

Note: Sorted by q-value. Ad, adrenal gland; Br, brain; He, heart; Lu, lung; Sp, spleen; St, stomach.

Table 41.

Genes were not described but selectively expressed in the liver based on their abundance (n = 3).

No. Gene ID Gene Name Median Organ FPKM p-value q-value Mean/ total
Mean Total
1 ENSRNOG00000054077 AABR07024870.1 Ad 277.7 277.8 8.88E-05 3.87E-03 1.000
2 ENSRNOG00000052176 AC115255.1 Du 9.3 10.4 3.78E-04 7.88E-03 0.895
3 ENSRNOG00000059330 AABR07004549.1 Ad 802.9 803.1 1.56E-03 1.66E-02 1.000
4 ENSRNOG00000062027 Rn60_12_0107.3 Ad 89.4 89.5 1.73E-03 1.75E-02 0.999
5 ENSRNOG00000021575 AABR07021096.1 Ad 42.3 42.9 4.88E-03 3.01E-02 0.987
6 ENSRNOG00000055973 AABR07058498.1 Ad 14.5 14.9 5.54E-03 3.22E-02 0.975

Note: Sorted by q-value. Ad, adrenal gland; Du, duodenum

Table 42.

Genes were not described but selectively expressed in the lung based on their abundance (n = 3).

No. Gene ID Gene Name Median Organ FPKM p-value q-value Mean/ total
Mean Total
1 ENSRNOG00000054709 AABR07061382.2 St 14.2 18.3 2.75E-06 3.69E-04 0.776
2 ENSRNOG00000053542 AABR07067469.1 Ad 11.5 11.9 1.45E-05 1.56E-03 0.963
3 ENSRNOG00000055889 AABR07030901.1 He 5.7 7.2 6.63E-05 3.16E-03 0.792
4 ENSRNOG00000036872 AC119007.1 St 29.1 30.6 1.51E-04 5.07E-03 0.950
5 ENSRNOG00000059588 AC113785.2 Ki 1016.6 1365.0 2.14E-04 6.04E-03 0.745
6 ENSRNOG00000046001 AABR07030823.1 He 22.4 28.4 8.07E-04 1.16E-02 0.790
7 ENSRNOG00000052597 AABR07062477.2 Ad 7.0 7.0 8.03E-04 1.18E-02 0.995
8 ENSRNOG00000050974 AABR07030773.1 St 9.3 12.2 3.21E-03 2.39E-02 0.761
9 ENSRNOG00000054935 Rn50_7_1408.2 St 14.7 15.0 5.45E-03 3.19E-02 0.980

Note: Sorted by q-value. Ad, adrenal gland; He, heart; Ki, kidney; St, stomach.

Table 43.

Genes were not described but selectively expressed in the spleen based on their abundance (n = 3).

No. Gene ID Gene Name Median Organ FPKM p-value q-value Mean/ total
Mean Total
1 ENSRNOG00000062220 LOC679342 St 9.1 12.0 3.88E-07 2.54E-04 0.764
2 ENSRNOG00000062144 AABR07035955.1 St 34.0 45.8 4.49E-06 8.67E-04 0.742
3 ENSRNOG00000053879 AABR07071821.1 Ad 8.8 8.9 5.70E-05 3.10E-03 0.988
4 ENSRNOG00000060395 AABR07025301.1 St 10.4 13.4 1.30E-04 4.70E-03 0.780
5 ENSRNOG00000057558 AC128792.2 Ki 1492.9 1879.3 1.89E-04 5.62E-03 0.794
6 ENSRNOG00000053143 Rn50_7_1407.3 Du 17.7 20.4 1.35E-03 1.41E-02 0.866
7 ENSRNOG00000041826 AABR07053152.1 St 14.6 19.8 1.66E-03 1.71E-02 0.736
8 ENSRNOG00000041746 AC095678.1 St 6.1 7.3 1.86E-03 1.82E-02 0.832
9 ENSRNOG00000039025 AABR07051947.1 Lu 24.8 34.8 4.04E-03 2.66E-02 0.713
10 ENSRNOG00000052921 AABR07021221.1 Ki 19.8 25.1 9.51E-03 4.25E-02 0.788
11 ENSRNOG00000054411 AABR07072897.1 St 6.4 8.9 1.07E-02 4.58E-02 0.714
12 ENSRNOG00000062261 Rn60_15_0518.2 Ad 6.5 6.7 1.18E-02 4.82E-02 0.977

Note: Sorted by q-value. Ad, adrenal gland; Du, duodenum; Ki, kidney; Lu, lung; St, stomach.

ACKNOWLEDGEMENTS

Declared none.

LIST OF ABBREVIATIONS

DOS

Disc Operation System

GO

Gene Ontology

Icam1

Intercellular Adhesion Molecule 1

KEGG

Kyoto Encyclopedia of Genes and Genomes

NGAL

Neutrophil Gelatinase-associated Lipocalin

PDE5a

Phosphodiesterase 5

SD

Sprague-Dawley

AUTHORS’ CONTRIBUTIONS

It is hereby acknowledged that all authors have accepted responsibility for the manuscript's content and consented to its submission. They have meticulously reviewed all results and unanimously approved the final version of the manuscript.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The animal experiments were approved by the Animal Care and Use Committee of Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine (Approved No. LL-20171023-01), Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China.

HUMAN AND ANIMAL RIGHTS

All the animal experimentation was performed according to the Guide for the CARE and USE of Laboratory Animals and ARRIVE guidelines.

CONSENT FOR PUBLICATION

Not applicable.

AVAILABILITY OF DATA AND MATERIALS

The raw data were uploaded as supplemental materials on the journal’s web.

FUNDING

This work was supported by the Foundation for Scien-tific Research provided by the National Natural Science Foundation of China (82260886), Yunnan Provincial Science and Technology Department–Applied Basic Research Joint Special Funds of Kunming Medical University (202101AY070001-007), and Yunnan Provincial Science and Technology Department–Applied Basic Research Joint Special Funds of Yunnan University of Traditional Chinese Medicine (202101AZ070001-010).

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

SUPPLEMENTARY MATERIAL

Supplementary material is available on the publisher’s website along with the published article. The raw data were uploaded on July 19, 2023 (Link: https://pan.baidu.com/s/1uOpvEIU_dRYgGmEIWc0SjA?pwd=DWG1 Password: DWG1)

REFERENCES

  • 1.Robinson J.W., Martin R.M., Tsavachidis S., Howell A.E., Relton C.L., Armstrong G.N., Bondy M., Zheng J., Kurian K.M. Transcriptome-wide Mendelian randomization study prioritising novel tissue-dependent genes for glioma susceptibility. Sci. Rep. 2021;11(1):2329. doi: 10.1038/s41598-021-82169-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Liu Y.M., Wu Z.K., Chai L.M., Zhang X.H., Li M., Chen Y.Y., Lv X.X., Zhu X.Y. [Effect on expression of mice alpha-hemoglobin stabilizing protein in different developmental stages treated with Yisui Shengxue granules]. Zhongguo Zhongyao Zazhi. 2007;32(7):609–612. [PubMed] [Google Scholar]
  • 3.Girard T.J., Antunes L., Zhang N., Amrute J.M., Subramanian R., Eldem I., Remy K.E., Mazer M., Erlich E.C., Cruchaga C., Steed A.L., Randolph G.J., Di Paola J. Peripheral blood mononuclear cell tissue factor (F3 gene) transcript levels and circulating extracellular vesicles are elevated in severe coronavirus 2019 (COVID-19) disease. J. Thromb. Haemost. 2023;21(3):629–638. doi: 10.1016/j.jtha.2022.11.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Wang W., Xia Z., Farré J.C., Subramani S. TRIM37 deficiency induces autophagy through deregulating the MTORC1-TFEB axis. Autophagy. 2018;14(9):1574–1585. doi: 10.1080/15548627.2018.1463120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.He C., Hua X., Sun S., Li S., Wang J., Huang X. Integrated bioinformatic analysis of SARS-CoV-2 infection related genes ACE2, BSG and TMPRSS2 in aerodigestive cancers. J. Inflamm. Res. 2021;14:791–802. doi: 10.2147/JIR.S300127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Schubert T., Reisch N., Naumann R., Reichardt I., Landgraf D., Quitter F., Thirumalasetty S.R., Heninger A.K., Sarov M., Peitzsch M., Huebner A., Koehler K. CYP21A2 gene expression in a humanized 21-hydroxylase mouse model does not affect adrenocortical morphology and function. J. Endocr. Soc. 2022;6(6):bvac062. doi: 10.1210/jendso/bvac062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Pras E., Arber N., Aksentijevich I., Katz G., Schapiro J.M., Prosen L., Gruberg L., Harel D., Liberman U., Weissenbach J., Pras M., Kastner D.L. Localization of a gene causing cystinuria to chromosome 2p. Nat. Genet. 1994;6(4):415–419. doi: 10.1038/ng0494-415. [DOI] [PubMed] [Google Scholar]
  • 8.Tran V.D.T., Moretti S., Coste A.T., Amorim-Vaz S., Sanglard D., Pagni M. Condition-specific series of metabolic sub-networks and its application for gene set enrichment analysis. Bioinformatics. 2019;35(13):2258–2266. doi: 10.1093/bioinformatics/bty929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Abou Nader N., Blais É., St-Jean G., Boerboom D., Zamberlam G., Boyer A. Effect of inactivation of Mst1 and Mst2 in the mouse adrenal cortex. J. Endocr. Soc. 2022;7(1):bvac143. doi: 10.1210/jendso/bvac143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Hartrampf P.E., Hüttmann T., Seitz A.K., Kübler H., Serfling S.E., Schlötelburg W., Michalski K., Rowe S.P., Pomper M.G., Buck A.K., Eberlein U., Werner R.A. SUVmean on baseline [18F]PSMA-1007 PET and clinical parameters are associated with survival in prostate cancer patients scheduled for [177Lu]Lu-PSMA I&T. Eur. J. Nucl. Med. Mol. Imaging. 2023;50(11):3465–3474. doi: 10.1007/s00259-023-06281-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Olivera J., Zhang V., Nemeth E., Ganz T. Erythroferrone exacerbates iron overload and ineffective extramedullary erythropoiesis in a mouse model of β-thalassemia. Blood Adv. 2023;7(14):3339–3349. doi: 10.1182/bloodadvances.2022009307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Du R., Bai S., Zhao Y., Ma Y. Efficient generation of TBX3+ atrioventricular conduction-like cardiomyocytes from human pluripotent stem cells. Biochem. Biophys. Res. Commun. 2023;669:143–149. doi: 10.1016/j.bbrc.2023.05.104. [DOI] [PubMed] [Google Scholar]
  • 13.Ihanus E., Uotila L.M., Toivanen A., Varis M., Gahmberg C.G. Red-cell ICAM-4 is a ligand for the monocyte/macrophage integrin CD11c/CD18: Characterization of the binding sites on ICAM-4. Blood. 2007;109(2):802–810. doi: 10.1182/blood-2006-04-014878. [DOI] [PubMed] [Google Scholar]
  • 14.Abolbaghaei A., Turner M., Thibodeau J.F., Holterman C.E., Kennedy C.R.J., Burger D. The proteome of circulating large extracellular vesicles in diabetes and hypertension. Int. J. Mol. Sci. 2023;24(5):4930. doi: 10.3390/ijms24054930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Dong W., Xia Z., Chai Z., Qiu Z., Wang X., Yang Z., Wang J., Zhang T., Zhang Q., Jin J. Proteomic analysis of small extracellular vesicles from the plasma of patients with hepatocellular carcinoma. World J. Surg. Oncol. 2022;20(1):387. doi: 10.1186/s12957-022-02849-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Kanczkowski W., Alexaki V.I., Tran N., Großklaus S., Zacharowski K., Martinez A., Popovics P., Block N.L., Chavakis T., Schally A.V., Bornstein S.R. Hypothalamo-pituitary and immune-dependent adrenal regulation during systemic inflammation. Proc. Natl. Acad. Sci. USA. 2013;110(36):14801–14806. doi: 10.1073/pnas.1313945110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Wang L., Wang F., Liu K., Long C., Chen Y., Li C., Li L., Liu F., Zhang X., Jing Y., Wang Y., Liang A., Yan H., Zhang H. αB‐crystallin/HSPB2 is critical for hyperactive mTOR‐induced cardiomyopathy. J. Cell. Physiol. 2021;236(12):8110–8121. doi: 10.1002/jcp.30465. [DOI] [PubMed] [Google Scholar]
  • 18.Ballantyne C.M., Sligh J.E., Jr, Dai X.Y., Beaudet A.L. Characterization of the murine Icam-1 gene. Genomics. 1992;14(4):1076–1080. doi: 10.1016/S0888-7543(05)80132-6. [DOI] [PubMed] [Google Scholar]
  • 19.Jiang H., Chen H., Wan P., Song S., Chen N. Downregulation of enhancer RNA EMX2OS is associated with poor prognosis in kidney renal clear cell carcinoma. Aging. 2020;12(24):25865–25877. doi: 10.18632/aging.202151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Parker F., Tang A.A.S., Rogers B., Carrington G., dos Remedios C., Li A., Tomlinson D., Peckham M. Affimers targeting proteins in the cardiomyocyte Z-disc: Novel tools that improve imaging of heart tissue. Front. Cardiovasc. Med. 2023;10:1094563. doi: 10.3389/fcvm.2023.1094563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Zhou X., Cao J., Zhu L., Farrell K., Wang M., Guo L., Yang J., McKenzie A., Crary J.F., Cai D., Tu Z., Zhang B. Molecular differences in brain regional vulnerability to aging between males and females. Front. Aging Neurosci. 2023;15:1153251. doi: 10.3389/fnagi.2023.1153251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Wagner C.A., Unwin R., Lopez-Garcia S.C., Kleta R., Bockenhauer D., Walsh S. The pathophysiology of distal renal tubular acidosis. Nat. Rev. Nephrol. 2023;19(6):384–400. doi: 10.1038/s41581-023-00699-9. [DOI] [PubMed] [Google Scholar]
  • 23.Achom A., Das R., Pakray P. An improved Fuzzy based GWO algorithm for predicting the potential host receptor of COVID-19 infection. Comput Biol Med. 2022;151((Pt A)):106050. doi: 10.1016/j.compbiomed.2022.106050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Bermúdez-Méndez E., Angelino P., van Keulen L., van de Water S., Rockx B., Pijlman G.P., Ciuffi A., Kortekaas J., Wichgers Schreur P.J. Transcriptomic profiling reveals intense host-pathogen dispute compromising homeostasis during acute rift valley fever virus infection. J. Virol. 2023;97(6):e00415–e00423. doi: 10.1128/jvi.00415-23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Kvorjak M., Ahmed Y., Miller M.L., Sriram R., Coronnello C., Hashash J.G., Hartman D.J., Telmer C.A., Miskov-Zivanov N., Finn O.J., Cascio S. Cross-talk between colon cells and macrophages increases ST6GALNAC1 and MUC1-sTn expression in ulcerative colitis and colitis-associated colon cancer. Cancer Immunol. Res. 2020;8(2):167–178. doi: 10.1158/2326-6066.CIR-19-0514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Teng Z.H., Li W.C., Li Z.C., Wang Y.X., Han Z.W., Zhang Y.P. Neutrophil extracellular traps-associated modification patterns depict the tumor microenvironment, precision immunotherapy, and prognosis of clear cell renal cell carcinoma. Front. Oncol. 2022;12:1094248. doi: 10.3389/fonc.2022.1094248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Brunner H.I., Mueller M., Rutherford C., Passo M.H., Witte D., Grom A., Mishra J., Devarajan P. Urinary neutrophil gelatinase–associated lipocalin as a biomarker of nephritis in childhood‐onset systemic lupus erythematosus. Arthritis Rheum. 2006;54(8):2577–2584. doi: 10.1002/art.22008. [DOI] [PubMed] [Google Scholar]
  • 28.Dong G., Wang M., Gu G., Li S., Sun X., Li Z., Cai H., Zhu Z. MACC1 and HGF are associated with survival in patients with gastric cancer. Oncol. Lett. 2017;15(3):3207–3213. doi: 10.3892/ol.2017.7710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Ham M., Mizumori M., Watanabe C., Wang J.H., Inoue T., Nakano T., Guth P.H., Engel E., Kaunitz J.D., Akiba Y. Endogenous luminal surface adenosine signaling regulates duodenal bicarbonate secretion in rats. J. Pharmacol. Exp. Ther. 2010;335(3):607–613. doi: 10.1124/jpet.110.171520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Sekine K., Ikezono T., Matsumura T., Shindo S., Watanabe A., Li L., Pawankar R., Nishino T., Yagi T. Expression of cochlin mRNA splice variants in the inner ear. Audiol. Neurotol. 2010;15(2):88–96. doi: 10.1159/000231634. [DOI] [PubMed] [Google Scholar]
  • 31.Naiki Y., Miyado M., Shindo M., Horikawa R., Hasegawa Y., Katsumata N., Takada S., Akutsu H., Onodera M., Fukami M. Adeno-associated virus-mediated gene therapy for patients’ fibroblasts, induced pluripotent stem cells, and a mouse model of congenital adrenal hyperplasia. Hum. Gene Ther. 2022;33(15-16):801–809. doi: 10.1089/hum.2022.005. [DOI] [PubMed] [Google Scholar]
  • 32.Xu J., Song P., Nakamura S., Miller M., Barone S., Alper S.L., Riederer B., Bonhagen J., Arend L.J., Amlal H., Seidler U., Soleimani M. Deletion of the chloride transporter slc26a7 causes distal renal tubular acidosis and impairs gastric acid secretion. J. Biol. Chem. 2009;284(43):29470–29479. doi: 10.1074/jbc.M109.044396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Sachs G., Shin J.M., Vagin O., Lambrecht N., Yakubov I., Munson K. The gastric H,K ATPase as a drug target: Past, present, and future. J. Clin. Gastroenterol. 2007;141(2):S226–S242. doi: 10.1097/MCG.0b013e31803233b7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Han Y., Li Y. Comprehensive exploration of M2 macrophages and its related genes for predicting clinical outcomes and drug sensitivity in lung squamous cell carcinoma. J. Oncol. 2022;2022:1–12. doi: 10.1155/2022/1163924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Zhou M., Wang Y., Qi S., Wang J., Zhang S. The expression of a mitochondria-localized glutamic acid-rich protein (MGARP/OSAP) is under the regulation of the HPG axis. Endocrinology. 2011;152(6):2311–2320. doi: 10.1210/en.2011-0050. [DOI] [PubMed] [Google Scholar]
  • 36.Martínez-Saucedo M., Bárcenas-Gómez Y., Baeza-Capetillo P., Dedden M., Aguirre-Hernandez J., Téllez-Camacho S.A., Sánchez-Urbina R., Aquino-Jarquin G., Granados-Riveron J.T. Identification of human miR‐1839‐5p by small RNA‐seq, a miRNA enriched in neoplastic tissues. J. Gene Med. 2019;21(10):e3117. doi: 10.1002/jgm.3117. [DOI] [PubMed] [Google Scholar]
  • 37.Sebrell T.A., Hashimi M., Sidar B., Wilkinson R.A., Kirpotina L., Quinn M.T., Malkoç Z., Taylor P.J., Wilking J.N., Bimczok D. A novel gastric spheroid co-culture model reveals chemokine-dependent recruitment of human dendritic cells to the gastric epithelium. Cell. Mol. Gastroenterol. Hepatol. 2019;8(1):157–171.e3. doi: 10.1016/j.jcmgh.2019.02.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Tatusov R.L., Galperin M.Y., Natale D.A., Koonin E.V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28(1):33–36. doi: 10.1093/nar/28.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Drobnis E.Z., Nangia A.K. Phosphodiesterase inhibitors (PDE Inhibitors) and male reproduction. Adv. Exp. Med. Biol. 2017;1034:29–38. doi: 10.1007/978-3-319-69535-8_5. [DOI] [PubMed] [Google Scholar]
  • 40.Astudillo L., Therville N., Colacios C., Ségui B., Andrieu-Abadie N., Levade T. Glucosylceramidases and malignancies in mammals. Biochimie. 2016;125:267–280. doi: 10.1016/j.biochi.2015.11.009. [DOI] [PubMed] [Google Scholar]
  • 41.Boncheva V., Linnebacher M., Kdimati S., Draper H., Orchard L., Mills K., O’Sullivan G., Tangney M., Guinn B. Identification of the antigens recognised by colorectal cancer patients using sera from patients who exhibit a crohn’s-like lymphoid reaction. Biomolecules. 2022;12(8):1058. doi: 10.3390/biom12081058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Wu Y., Hao Y., Zhuang Q., Ma X., Shi C. AKR1B10 regulates M2 macrophage polarization to promote the malignant phenotype of gastric cancer. Biosci. Rep. 2023;43(10):BSR20222007. doi: 10.1042/BSR20222007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Prasad P., Tippana M. Morphogenic plasticity: The pathogenic attribute of Candida albicans. Curr. Genet. 2023;69(2-3):77–89. doi: 10.1007/s00294-023-01263-5. [DOI] [PubMed] [Google Scholar]
  • 44.Weger M., Diotel N., Weger B.D., Beil T., Zaucker A., Eachus H.L., Oakes J.A., do Rego J.L., Storbeck K.H., Gut P., Strähle U., Rastegar S., Müller F., Krone N. Expression and activity profiling of the steroidogenic enzymes of glucocorticoid biosynthesis and the fdx1 co‐factors in zebrafish. J. Neuroendocrinol. 2018;30(4):e12586. doi: 10.1111/jne.12586. [DOI] [PubMed] [Google Scholar]
  • 45.Swynghedauw B., Schwartz K., Léger J.J. Phylogenic and pathological changes. Basic Res. Cardiol. 1977;72(2-3):254–260. doi: 10.1007/BF01906370. [DOI] [PubMed] [Google Scholar]
  • 46.Iwasa M., Yamagata T., Mizuguchi M., Itoh M., Matsumoto A., Hironaka M., Honda A., Momoi M.Y., Shimozawa N. ContiguousABCD1 DXS1357E deletion syndrome: Report of an autopsy case. Neuropathology. 2013;33(3):292–298. doi: 10.1111/j.1440-1789.2012.01348.x. [DOI] [PubMed] [Google Scholar]
  • 47.Gawenis L.R., Greeb J.M., Prasad V., Grisham C., Sanford L.P., Doetschman T., Andringa A., Miller M.L., Shull G.E. Impaired gastric acid secretion in mice with a targeted disruption of the NHE4 Na+/H+ exchanger. J. Biol. Chem. 2005;280(13):12781–12789. doi: 10.1074/jbc.M414118200. [DOI] [PubMed] [Google Scholar]
  • 48.Satala C.B., Jung I., Kovacs Z., Stefan-Van Staden R.I., Molnar C., Bara T., Patrichi A.I., Gurzu S. V-set and immunoglobulin domain containing 1 (VSIG1) as an emerging target for epithelial–mesenchymal transition of gastric cancer. Sci. Rep. 2022;12(1):16241. doi: 10.1038/s41598-022-19883-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Langfelder P., Horvath S., Fast R. Fast R functions for robust correlations and hierarchical clustering. J. Stat. Softw. 2012;46(11):i11. doi: 10.18637/jss.v046.i11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Kuehn F., Adiliaghdam F., Hamarneh S.R., Vasan R., Liu E., Liu Y., Ramirez J.M., Hoda R.S., Munoz A.R., Ko F.C., Armanini M., Brooks D.J., Bouxsein M.L., Demay M.B., Hodin R.A. Loss of intestinal alkaline phosphatase leads to distinct chronic changes in bone phenotype. J. Surg. Res. 2018;232:325–331. doi: 10.1016/j.jss.2018.06.061. [DOI] [PubMed] [Google Scholar]
  • 51.Talaei M., Emmett P.M., Granell R., Tabatabaeian H., Northstone K., Bergström A., Shaheen S.O. Dietary patterns, lung function and asthma in childhood: A longitudinal study. Respir. Res. 2023;24(1):82. doi: 10.1186/s12931-023-02383-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Singh H., Ha K., Hornick J.L., Madha S., Cejas P., Jajoo K., Singh P., Polak P., Lee H., Shivdasani R.A. Hybrid stomach-intestinal chromatin states underlie human barrett’s metaplasia. Gastroenterology. 2021;161(3):924–939.e11. doi: 10.1053/j.gastro.2021.05.057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Ruppert V., Meyer T., Richter A., Maisch B., Pankuweit S. Identification of a missense mutation in the melusin-encoding ITGB1BP2 gene in a patient with dilated cardiomyopathy. Gene. 2013;512(2):206–210. doi: 10.1016/j.gene.2012.10.055. [DOI] [PubMed] [Google Scholar]
  • 54.Kanehisa M., Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi: 10.1093/nar/28.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Hou Z., Yang J., Wang G., Wang C., Zhang H. Bioinformatic analysis of gene expression profiles of pituitary gonadotroph adenomas. Oncol. Lett. 2017;15(2):1655–1663. doi: 10.3892/ol.2017.7505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Kim H.S., Na M.J., Son K.H., Yang H.D., Kim S.Y., Shin E., Ha J.W., Jeon S., Kang K., Moon K., Park W.S., Nam S.W. ADAR1-dependent miR-3144-3p editing simultaneously induces MSI2 expression and suppresses SLC38A4 expression in liver cancer. Exp. Mol. Med. 2023;55(1):95–107. doi: 10.1038/s12276-022-00916-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Wu Y., Smas C.M. Expression and regulation of transcript for the novel transmembrane protein Tmem182 in the adipocyte and muscle lineage. BMC Res. Notes. 2008;1(1):85. doi: 10.1186/1756-0500-1-85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Ago Y., Asano S., Hashimoto H., Waschek J.A. Probing the VIPR2 microduplication linkage to schizophrenia in animal and cellular models. Front. Neurosci. 2021;15:717490. doi: 10.3389/fnins.2021.717490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Richter M., Wang H., Lieber A. Role of fiber shaft length in tumor targeting with Ad5/3 vectors. Genes. 2022;13(11):2056. doi: 10.3390/genes13112056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Wang L., Fouts D.E., Stärkel P., Hartmann P., Chen P., Llorente C., DePew J., Moncera K., Ho S.B., Brenner D.A., Hooper L.V., Schnabl B. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation. Cell Host Microbe. 2016;19(2):227–239. doi: 10.1016/j.chom.2016.01.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Huang H., Zhang Q., Zhang Y., Sun X., Liu C., Wang Q., Huang Y., Li Q., Wu Z., Pu C., Sun A. Identification of the level of exosomal protein by parallel reaction monitoring technology in HCC patients. Int. J. Gen. Med. 2022;15:7831–7842. doi: 10.2147/IJGM.S384140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Jaime-Cruz R., Sánchez-Gómez C., Villavicencio-Guzmán L., Lazzarini-Lechuga R., Patiño-Morales C.C., García-Lorenzana M., Ramírez-Fuentes T.C., Salazar-García M. Embryonic hyperglycemia disrupts myocardial growth, morphological development, and cellular organization: An in vivo experimental study. Life. 2023;13(3):768. doi: 10.3390/life13030768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Oliver M.H., Jaquiery A.L., Connor K.L., Phua H.H., Harding J.E., Thorstensen E.B., Bloomfield F.H. Effect of maternal periconceptional undernutrition in sheep on cortisol regulation in offspring from mid-late gestation, through to adulthood. Front. Endocrinol. 2023;14:1122432. doi: 10.3389/fendo.2023.1122432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Altrock E., Sens-Albert C., Hofmann F., Riabov V., Schmitt N., Xu Q., Jann J.C., Rapp F., Steiner L., Streuer A., Nowak V., Obländer J., Weimer N., Palme I., Göl M., Darwich A., Wuchter P., Metzgeroth G., Jawhar M., Hofmann W.K., Nowak D. Significant improvement of bone marrow-derived MSC expansion from MDS patients by defined xeno-free medium. Stem Cell Res. Ther. 2023;14(1):156. doi: 10.1186/s13287-023-03386-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Sampaio P., Waitzberg D.L., Machado N.M., de Miranda Torrinhas R.S.M., Fonseca D.C., Ferreira B.A.M., Marques M., Barcelos S., Ishida R.K., Guarda I., de Moura E.G.H., Sakai P., Santo M.A., Heymsfield S.B., Correa-Giannella M.L., Passadore M.D., Sala P. Gastrointestinal genetic reprogramming of vitamin A metabolic pathways in response of Roux-en-Y gastric bypass. Int. J. Vitam. Nutr. Res. 2024;94(1):27–36. doi: 10.1024/0300-9831/a000767. [DOI] [PubMed] [Google Scholar]
  • 66.Hijazi H., Reis L.M., Pehlivan D., Bernstein J.A., Muriello M., Syverson E., Bonner D., Estiar M.A., Gan-Or Z., Rouleau G.A., Lyulcheva E., Greenhalgh L., Tessarech M., Colin E., Guichet A., Bonneau D., van Jaarsveld R.H., Lachmeijer A.M.A., Ruaud L., Levy J., Tabet A.C., Ploski R., Rydzanicz M., Kępczyński Ł., Połatyńska K., Li Y., Fatih J.M., Marafi D., Rosenfeld J.A., Coban-Akdemir Z., Bi W., Gibbs R.A., Hobson G.M., Hunter J.V., Carvalho C.M.B., Posey J.E., Semina E.V., Lupski J.R. TCEAL1 loss-of-function results in an X-linked dominant neurodevelopmental syndrome and drives the neurological disease trait in Xq22.2 deletions. Am. J. Hum. Genet. 2022;109(12):2270–2282. doi: 10.1016/j.ajhg.2022.10.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Akhtar M.J., Khan S.A., Kumar B., Chawla P., Bhatia R., Singh K. Role of sodium dependent SLC13 transporter inhibitors in various metabolic disorders. Mol. Cell. Biochem. 2023;478(8):1669–1687. doi: 10.1007/s11010-022-04618-7. [DOI] [PubMed] [Google Scholar]
  • 68.Gao Y., Yu Y., Qin W., Fan N., Qi Y., Chen H., Duan W. Uricase-deficient rats with similarly stable serum uric acid to human’s are sensitive model animals for studying hyperuricemia. PLoS One. 2022;17(3):e0264696. doi: 10.1371/journal.pone.0264696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Camara-Clayette V., Rahuel C., Lopez C., Hattab C., Verkarre V., Bertrand O., Cartron J.P. Transcriptional regulation of the KEL gene and Kell protein expression in erythroid and non-erythroid cells. Biochem. J. 2001;356(1):171–180. doi: 10.1042/bj3560171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Shi X., Zhang Y., Gong Y., Chen M., Brand-Arzamendi K., Liu X., Wen X.Y. Zebrafish hhatla is involved in cardiac hypertrophy. J. Cell. Physiol. 2021;236(5):3700–3709. doi: 10.1002/jcp.30106. [DOI] [PubMed] [Google Scholar]
  • 71.Bardy C., van den Hurk M., Kakaradov B., Erwin J.A., Jaeger B.N., Hernandez R.V., Eames T., Paucar A.A., Gorris M., Marchand C., Jappelli R., Barron J., Bryant A.K., Kellogg M., Lasken R.S., Rutten B.P.F., Steinbusch H.W.M., Yeo G.W., Gage F.H. Predicting the functional states of human iPSC-derived neurons with single-cell RNA-seq and electrophysiology. Mol. Psychiatry. 2016;21(11):1573–1588. doi: 10.1038/mp.2016.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Kondo T., Kitano S., Miyakawa N., Watanabe T., Goto R., Sato M., Hanatani S., Sakaguchi M., Igata M., Kawashima J., Motoshima H., Matsumura T., Araki E. The amount of residual incretin regulates the pancreatic β-cell function and glucose homeostasis. Intern. Med. 2021;60(9):1433–1442. doi: 10.2169/internalmedicine.6026-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Cardoso-Moreira M., Sarropoulos I., Velten B., Mort M., Cooper D.N., Huber W., Kaessmann H. Developmental gene expression differences between humans and mammalian models. Cell Rep. 2020;33(4):108308. doi: 10.1016/j.celrep.2020.108308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Koonin E.V., Fedorova N.D., Jackson J.D., Jacobs A.R., Krylov D.M., Makarova K.S., Mazumder R., Mekhedov S.L., Nikolskaya A.N., Rao B.S., Rogozin I.B., Smirnov S., Sorokin A.V., Sverdlov A.V., Vasudevan S., Wolf Y.I., Yin J.J., Natale D.A. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol. 2004;5(2):R7. doi: 10.1186/gb-2004-5-2-r7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Siino V., Amato A., Di Salvo F., Caldara G.F., Filogamo M., James P., Vasto S. Impact of diet-induced obesity on the mouse brain phosphoproteome. J. Nutr. Biochem. 2018;58:102–109. doi: 10.1016/j.jnutbio.2018.04.015. [DOI] [PubMed] [Google Scholar]
  • 76.Kalisch-Smith J.I., Simmons D.G., Pantaleon M., Moritz K.M. Sex differences in rat placental development: From pre-implantation to late gestation. Biol. Sex Differ. 2017;8(1):17. doi: 10.1186/s13293-017-0138-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Calado J., Santos A.R., Aires I., Lebre F., Nolasco F., Rueff J., Ramalho J. The Na + ‐coupled glucose transporter SGLT 2 interacts with its accessory unit MAP 17 in vitro and their expressions overlap in the renal proximal tubule. FEBS Lett. 2018;592(19):3317–3326. doi: 10.1002/1873-3468.13233. [DOI] [PubMed] [Google Scholar]
  • 78.Calvano J., Achanzar W., Murphy B., DiPiero J., Hixson C., Parrula C., Burr H., Mangipudy R., Tirmenstein M. Evaluation of microRNAs−208 and 133a/b as differential biomarkers of acute cardiac and skeletal muscle toxicity in rats. Toxicol. Appl. Pharmacol. 2016;312:53–60. doi: 10.1016/j.taap.2015.11.015. [DOI] [PubMed] [Google Scholar]
  • 79.Yang S., Wei Z., Wu J., Sun M., Ma Y., Liu G. Proteomic analysis of liver tissues in chicken embryo at Day 16 and Day 20 reveals antioxidant mechanisms. J. Proteomics. 2021;243:104258. doi: 10.1016/j.jprot.2021.104258. [DOI] [PubMed] [Google Scholar]
  • 80.Mullen R.J., Buck C.R., Smith A.M. NeuN, a neuronal specific nuclear protein in vertebratesxs. Development. 1992;116(1):201–211. doi: 10.1242/dev.116.1.201. [DOI] [PubMed] [Google Scholar]
  • 81.Yang L., Wu Y., Su Y., Zhang X., Chakraborty T., Wang D., Zhou L. Cyp17a2 is involved in testicular development and fertility in male Nile tilapia, Oreochromis niloticus. Front. Endocrinol. 2022;13:1074921. doi: 10.3389/fendo.2022.1074921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Van Laere S., Van der Auwera I., Van den Eynden G., Van Hummelen P., van Dam P., Van Marck E., Vermeulen P.B., Dirix L. Distinct molecular phenotype of inflammatory breast cancer compared to non-inflammatory breast cancer using Affymetrix-based genome-wide gene-expression analysis. Br. J. Cancer. 2007;97(8):1165–1174. doi: 10.1038/sj.bjc.6603967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Zhang Y., Yao E., Liu Y., Zhang Y., Ding M., Liu J., Chen X., Fan S. FUT2 facilitates autophagy and suppresses apoptosis via p53 and JNK signaling in lung adenocarcinoma cells. Cells. 2022;11(24):4031. doi: 10.3390/cells11244031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Zhu C., Fu Y., Xia L., Li F., Huang K., Sun X. Expression profiles, prognosis, and ceRNA regulation of SRY-related HMG-Box genes in stomach adenocarcinoma. J. Environ. Pathol. Toxicol. Oncol. 2023;42(2):79–91. doi: 10.1615/JEnvironPatholToxicolOncol.2022044640. [DOI] [PubMed] [Google Scholar]
  • 85.Mori H., Yoshino Y., Iga J., Ochi S., Funahashi Y., Yamazaki K., Kumon H., Ozaki Y., Ueno S. Aberrant expression of GABA-related genes in the hippocampus of 3xTg-AD model mice from the early to end stages of alzheimer’s disease. J. Alzheimers Dis. 2023;94(1):177–188. doi: 10.3233/JAD-230078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Suga K., Kobayashi Y., Ochiai R. Impact of left heart bypass on arterial oxygenation during one-lung ventilation for thoracic aortic surgery. J. Cardiothorac. Vasc. Anesth. 2017;31(4):1197–1202. doi: 10.1053/j.jvca.2016.09.026. [DOI] [PubMed] [Google Scholar]
  • 87.Wang Y., Guan Y., Xie Q., Gong W., Li J., Chen T., Xu Y., Xu N., Chen S., Chen M., Wang Z., Hao C.M. The metabolites of de novo NAD+ synthesis are a valuable predictor of acute kidney injury. Clin. Kidney J. 2023;16(4):711–721. doi: 10.1093/ckj/sfac262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Yin H., Hou X., Tao T., Lv X., Zhang L., Duan W. Neurite outgrowth resistance to rho kinase inhibitors in PC12 Adh cell. Cell Biol. Int. 2015;39(5):563–576. doi: 10.1002/cbin.10423. [DOI] [PubMed] [Google Scholar]
  • 89.Li Xu L., Wei Zhang H., Lin H., Mei Zhang X., Qi Wen Y., Long Zhao J., Xing Li Z., Gasset M. SWATH-MS-based proteomics reveals functional biomarkers of Th1/Th2 responses of tropomyosin allergy in mouse models. Food Chem. 2022;383:132474. doi: 10.1016/j.foodchem.2022.132474. [DOI] [PubMed] [Google Scholar]
  • 90.Li T., di Stefano G., Raza G.S., Sommerer I., Riederer B., Römermann D., Tan X., Tan Q., Pallagi P., Hollenbach M., Herzig K.H., Seidler U. Hydrokinetic pancreatic function and insulin secretion are moduled by Cl − uniporter Slc26a9 in mice. Acta Physiol. 2022;234(1):e13729. doi: 10.1111/apha.13729. [DOI] [PubMed] [Google Scholar]
  • 91.Nawata C.M., Hung C.C.Y., Tsui T.K.N., Wilson J.M., Wright P.A., Wood C.M. Ammonia excretion in rainbow trout (Oncorhynchus mykiss): evidence for Rh glycoprotein and H + -ATPase involvement. Physiol. Genomics. 2007;31(3):463–474. doi: 10.1152/physiolgenomics.00061.2007. [DOI] [PubMed] [Google Scholar]
  • 92.Luo Y., Tian L., Liang C., Xu Y. KLHL38 facilitates staurosporine‐induced apoptosis in HL‐1 cells via myocardin degradation. IUBMB Life. 2022;74(5):446–462. doi: 10.1002/iub.2602. [DOI] [PubMed] [Google Scholar]
  • 93.Wu Z., Liu X., Huang S., Li T., Zhang X., Pang J., Zhao J., Chen L., Zhang B., Wang J., Han D. Milk fat globule membrane attenuates acute colitis and secondary liver injury by improving the mucus barrier and regulating the gut microbiota. Front. Immunol. 2022;13:865273. doi: 10.3389/fimmu.2022.865273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Li Y., Gao J., Zhao D., Guan X., Morris S.C., Finkelman F.D., Huang H. The Hdc GC box is critical for Hdc gene transcription and histamine-mediated anaphylaxis. J. Allergy Clin. Immunol. 2023;152(1):195–204.e3. doi: 10.1016/j.jaci.2023.01.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Hao J., Zeltz C., Pintilie M., Li Q., Sakashita S., Wang T., Cabanero M., Martins-Filho S.N., Wang D.Y., Pasko E., Venkat K., Joseph J., Raghavan V., Zhu C.Q., Wang Y.H., Moghal N., Tsao M.S., Navab R. Characterization of distinct populations of carcinoma-associated fibroblasts from non–small cell lung carcinoma reveals a role for ST8SIA2 in cancer cell invasion. Neoplasia. 2019;21(5):482–493. doi: 10.1016/j.neo.2019.03.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Alifanov V., Tashireva L., Zavyalova M., Perelmuter V. LIMCH1 as a new potential metastasis predictor in breast cancer. Asian Pac. J. Cancer Prev. 2022;23(11):3947–3952. doi: 10.31557/APJCP.2022.23.11.3947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Przygodzka P., Papiewska-Pająk I., Bogusz-Koziarska H., Sochacka E., Boncela J., Kowalska M.A. Regulation of miRNAs by Snail during epithelial-to-mesenchymal transition in HT29 colon cancer cells. Sci. Rep. 2019;9(1):2165. doi: 10.1038/s41598-019-39200-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Fregnan G.B., Frigerio L., Porta R., Prada M., Ruggieri F. Therapeutic properties of dihydroxy-dibutylether on sub-acute liver damage induced by several hepatotoxic agents in rats. Int. J. Tissue React. 1982;4(4):309–318. [PubMed] [Google Scholar]
  • 99.Pegram M., Slamon D. Biological rationale for HER2/neu (c-erbB2) as a target for monoclonal antibody therapy. Semin. Oncol. 2000;27(5) Suppl. 9:13–19. [PubMed] [Google Scholar]
  • 100.Wartenberg P., Lux F., Busch K., Fecher-Trost C., Flockerzi V., Krasteva-Christ G., Boehm U., Weissgerber P. A TRPV6 expression atlas for the mouse. Cell Calcium. 2021;100:102481. doi: 10.1016/j.ceca.2021.102481. [DOI] [PubMed] [Google Scholar]
  • 101.Logantha S.J.R.J., Yamanushi T.T., Absi M., Temple I.P., Kabuto H., Hirakawa E., Quigley G., Zhang X., Gurney A.M., Hart G., Zhang H., Dobrzynski H., Boyett M.R., Yanni J. Remodelling and dysfunction of the sinus node in pulmonary arterial hypertension. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2023;378(1879):20220178. doi: 10.1098/rstb.2022.0178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Gong S., Sun N., Meyer L.S., Tetti M., Koupourtidou C., Krebs S., Masserdotti G., Blum H., Rainey W.E., Reincke M., Walch A., Williams T.A. Primary aldosteronism: Spatial multiomics mapping of genotype-dependent heterogeneity and tumor expansion of aldosterone-producing adenomas. Hypertension. 2023;80(7):1555–1567. doi: 10.1161/HYPERTENSIONAHA.123.20921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Vir P., Kaur J., Mahmood A. Effect of chronic iron ingestion on the development of brush border enzymes in rat intestine. Toxicol. Mech. Methods. 2007;17(7):393–399. doi: 10.1080/15376510601102793. [DOI] [PubMed] [Google Scholar]
  • 104.Gerges S.H., El-Kadi A.O.S. Sexual dimorphism in the expression of cytochrome P450 enzymes in rat heart, liver, kidney, lung, brain, and small intestine. Drug Metab. Dispos. 2023;51(1):81–94. doi: 10.1124/dmd.122.000915. [DOI] [PubMed] [Google Scholar]
  • 105.Vasco C., Rizzo A., Cordiglieri C., Corsini E., Maderna E., Ciusani E., Salmaggi A. The role of adhesion molecules and extracellular vesicles in an in vitro model of the blood–brain barrier for metastatic disease. Cancers. 2023;15(11):3045. doi: 10.3390/cancers15113045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Pan P., Leppilampi M., Pastorekova S., Pastorek J., Waheed A., Sly W.S., Parkkila S. Carbonic anhydrase gene expression in CA II‐deficient (Car2 −/−) and CA IX‐deficient (Car9 −/−) mice. J. Physiol. 2006;571(2):319–327. doi: 10.1113/jphysiol.2005.102590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Liu D., Yun Y., Yang D., Hu X., Dong X., Zhang N., Zhang L., Yin H., Duan W. What is the biological function of uric acid? An antioxidant for neural protection or a biomarker for cell death. Dis. Markers. 2019;2019:1–9. doi: 10.1155/2019/4081962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Zhan X., Li F., Chu Q., Pang H. Secretogranin III may be an indicator of paraquat-induced astrocyte activation and affects the recruitment of BDNF during this process. Int. J. Mol. Med. 2018;42(6):3622–3630. doi: 10.3892/ijmm.2018.3909. [DOI] [PubMed] [Google Scholar]
  • 109.Zhong Q., Yin J., Wang K., Chen X., Wang H., Hu X., Wang W., Wang L., Bei W., Guo J. FTZ promotes islet β-cell regeneration in T1DM mice via the regulation of nuclear proliferation factors. J. Ethnopharmacol. 2023;315:116564. doi: 10.1016/j.jep.2023.116564. [DOI] [PubMed] [Google Scholar]
  • 110.Ding Y., Zhang Y., Wang Z., Zeng F., Zhen Q., Zhao H., Li J., Ma T., Huang C. Echinacoside from Cistanche tubulosa ameliorates alcohol‐induced liver injury and oxidative stress by targeting Nrf2. FASEB J. 2023;37(3):e22792. doi: 10.1096/fj.202201430R. [DOI] [PubMed] [Google Scholar]
  • 111.Downs B.M., Ding W., Cope L.M., Umbricht C.B., Li W., He H., Ke X., Holdhoff M., Bettegowda C., Tao W., Sukumar S. Methylated markers accurately distinguish primary central nervous system lymphomas (PCNSL) from other CNS tumors. Clin. Epigenetics. 2021;13(1):104. doi: 10.1186/s13148-021-01091-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Abou-Elhamd A., Cooper O., Münsterberg A. Klhl31 is associated with skeletal myogenesis and its expression is regulated by myogenic signals and Myf-5. Mech. Dev. 2009;126(10):852–862. doi: 10.1016/j.mod.2009.07.006. [DOI] [PubMed] [Google Scholar]
  • 113.Kohane I.S. Ten things we have to do to achieve precision medicine. Science. 2015;349(6243):37–38. doi: 10.1126/science.aab1328. [DOI] [PubMed] [Google Scholar]
  • 114.Shen W., Le S., Li Y., Hu F. SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One. 2016;11(10):e0163962. doi: 10.1371/journal.pone.0163962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Jin Y., Weberpals J.G., Wang S.V., Desai R.J., Merola D., Lin K.J. The impact of longitudinal DATA‐COMPLETENESS of electronic health record data on the prediction performance of clinical risk scores. Clin. Pharmacol. Ther. 2023;113(6):1359–1367. doi: 10.1002/cpt.2901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Liu J., Deng Y., Fan Z., Xu S., Wei L., Huang X., Xing X., Yang J. Construction and analysis of the abnormal lncRNA–miRNA–mRNA network in hypoxic pulmonary hypertension. Biosci. Rep. 2021;41(8):BSR20210021. doi: 10.1042/BSR20210021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Seo Y.E., Baine S.H., Kempton A.N., Rogers O.C., Lewis S., Adegboye K., Haile A., Griffin D.A., Peterson E.L., Pozsgai E.R., Potter R.A., Rodino-Klapac L.R. Systemic γ-sarcoglycan AAV gene transfer results in dose-dependent correction of muscle deficits in the LGMD 2C/R5 mouse model. Mol. Ther. Methods Clin. Dev. 2023;28:284–299. doi: 10.1016/j.omtm.2023.01.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Kühn S., Williams M.E., Dercksen M., Sass J.O., van der Sluis R. The glycine N-acyltransferases, GLYAT and GLYATL1, contribute to the detoxification of isovaleryl-CoA - an in-silico and in vitro validation. Comput. Struct. Biotechnol. J. 2023;21:1236–1248. doi: 10.1016/j.csbj.2023.01.041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Yu G., Wang L.G., Han Y., He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–287. doi: 10.1089/omi.2011.0118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Guo H., Liu R., He J., Yao W., Zheng W. Heat stress modulates a placental immune response associated with alterations in the development of the fetal intestine and its innate immune system in late pregnant mouse. Front. Physiol. 2022;13:841149. doi: 10.3389/fphys.2022.841149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Fan J., Xia X., Fan Z. Hsa_circ_0129047 regulates the MIR ‐375/ACVRL1 axis to attenuate the progression of lung adenocarcinoma. J. Clin. Lab. Anal. 2022;36(9):e24591. doi: 10.1002/jcla.24591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.El-Gharbawi N., Shaheen I., Hamdy M., Elgawhary S., Samir M., Hanna B.M., Ali E.Y., Youssef E.A. Genetic variations of ferroportin-1(FPN1-8CG), TMPRSS6 (rs855791) and Hemojuvelin (I222N and G320V) among a cohort of egyptian β-thalassemia major patients. Indian J. Hematol. Blood Transfus. 2023;39(2):258–265. doi: 10.1007/s12288-022-01580-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Miyamae Y., Mochizuki S., Shimoda M., Ohara K., Abe H., Yamashita S., Kazuno S., Ohtsuka T., Ochiai H., Kitagawa Y., Okada Y. ADAM 28 is expressed by epithelial cells in human normal tissues and protects from C1q‐induced cell death. FEBS J. 2016;283(9):1574–1594. doi: 10.1111/febs.13693. [DOI] [PubMed] [Google Scholar]
  • 124.Sinclair A., Park L., Shah M., Drotar M., Calaminus S., Hopcroft L.E.M., Kinstrie R., Guitart A.V., Dunn K., Abraham S.A., Sansom O., Michie A.M., Machesky L., Kranc K.R., Graham G.J., Pellicano F., Holyoake T.L. CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells. Blood. 2016;128(3):371–383. doi: 10.1182/blood-2015-08-661785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Brenner M., Gulko P.S. The arthritis severity locus Cia5a regulates the expression of inflammatory mediators including Syk pathway genes and proteases in pristane-induced arthritis. BMC Genomics. 2012;13(1):710. doi: 10.1186/1471-2164-13-710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Montanes-Agudo P., Pinto Y.M., Creemers E.E. Splicing factors in the heart: Uncovering shared and unique targets. J. Mol. Cell. Cardiol. 2023;179:72–79. doi: 10.1016/j.yjmcc.2023.04.003. [DOI] [PubMed] [Google Scholar]
  • 127.Hoang C.Q., Hale M.A., Azevedo-Pouly A.C., Elsässer H.P., Deering T.G., Willet S.G., Pan F.C., Magnuson M.A., Wright C.V.E., Swift G.H., MacDonald R.J. Transcriptional maintenance of pancreatic acinar identity, differentiation, and homeostasis by PTF1A. Mol. Cell. Biol. 2016;36(24):3033–3047. doi: 10.1128/MCB.00358-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Wang M., Wang X., Jiang B., Zhai Y., Zheng J., Yang L., Tai X., Li Y., Fu S., Xu J., Lei X., Kuang Z., Zhang C., Bai X., Li M., Zan T., Qu S., Li Q., Zhang C. Identification of MRAP protein family as broad‐spectrum GPCR modulators. Clin. Transl. Med. 2022;12(11):e1091. doi: 10.1002/ctm2.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Woodman A.G., Mah R.L., Kinney S., Holody C.D., Wiedemeyer A.R., Noble R.M.N., Clugston R.D., Bourque S.L. Perinatal iron deficiency causes sex-dependent alterations in renal retinoic acid signaling and nephrogenesis. J. Nutr. Biochem. 2023;112:109227. doi: 10.1016/j.jnutbio.2022.109227. [DOI] [PubMed] [Google Scholar]
  • 130.Tan E., Kinoshita S., Suzuki Y., Ineno T., Tamaki K., Kera A., Muto K., Yada T., Kitamura S., Asakawa S., Watabe S. Different gene expression profiles between normal and thermally selected strains of rainbow trout, Oncorhynchus mykiss, as revealed by comprehensive transcriptome analysis. Gene. 2016;576(2):637–643. doi: 10.1016/j.gene.2015.10.028. [DOI] [PubMed] [Google Scholar]
  • 131.Liu Z., Liu H., Wang Y., Li Z. A 9-gene expression signature to predict stage development in resectable stomach adenocarcinoma. BMC Gastroenterol. 2022;22(1):435. doi: 10.1186/s12876-022-02510-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Amaral-Silva L., Santin J.M. Molecular profiling of CO2/pH-sensitive neurons in the locus coeruleus of bullfrogs reveals overlapping noradrenergic and glutamatergic cell identity. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2023;283:111453. doi: 10.1016/j.cbpa.2023.111453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Tian Y., Jin Z., Zhu P., Liu S., Zhang D., Tang M., Wang Y., Li D., Yan D., Li G., Zhu X. TRIM59: A membrane protein expressed on Bacillus Calmette-Guérin-activated macrophages that induces apoptosis of fibrosarcoma cells by direct contact. Exp. Cell Res. 2019;384(1):111590. doi: 10.1016/j.yexcr.2019.111590. [DOI] [PubMed] [Google Scholar]
  • 134.Alhajouj M.S., Alsharif G.S., Mirza A.A. Impact of sequential passaging on protein expression of E. coli using proteomics analysis. Int. J. Microbiol. 2020;2020:1–8. doi: 10.1155/2020/2716202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Chen L., Chen D.Q., Wang M., Liu D., Chen H., Dou F., Vaziri N.D., Zhao Y.Y. Role of RAS/Wnt/β-catenin axis activation in the pathogenesis of podocyte injury and tubulo-interstitial nephropathy. Chem. Biol. Interact. 2017;273:56–72. doi: 10.1016/j.cbi.2017.05.025. [DOI] [PubMed] [Google Scholar]
  • 136.Navarro Garrido A., Kim Y.C., Oe Y., Zhang H., Crespo-Masip M., Goodluck H.A., Kanoo S., Sanders P.W., Bröer S., Vallon V. Aristolochic acid-induced nephropathy is attenuated in mice lacking the neutral amino acid transporter B 0 AT1 (Slc6a19). Am. J. Physiol. Renal Physiol. 2022;323(4):F455–F467. doi: 10.1152/ajprenal.00181.2022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Vetrivel P., Nachimuthu S., Abuyaseer A., Bhosale P.B., Ha S.E., Kim H.H., Park M.Y., Kim G.S. Investigation on the cellular mechanism of Prunetin evidenced through next generation sequencing and bioinformatic approaches against gastric cancer. Sci. Rep. 2022;12(1):11852. doi: 10.1038/s41598-022-15826-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Muri L., Schubart A., Thorburn C., Zamurovic N., Holbro T., Kammüller M., Pluschke G., Ispasanie E. Inhibition of the different complement pathways has varying impacts on the serum bactericidal activity and opsonophagocytosis against Haemophilus influenzae type b. Front. Immunol. 2022;13:1020580. doi: 10.3389/fimmu.2022.1020580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Chen T.Y., Huang B.M., Tang T.K., Chao Y.Y., Xiao X.Y., Lee P.R., Yang L.Y., Wang C.Y. Genotoxic stress-activated DNA-PK-p53 cascade and autophagy cooperatively induce ciliogenesis to maintain the DNA damage response. Cell Death Differ. 2021;28(6):1865–1879. doi: 10.1038/s41418-020-00713-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Cuevas M., Terhune E., Wethey C., James M., Netsanet R., Grofova D., Monley A., Hadley Miller N. Cytoskeletal keratins are overexpressed in a zebrafish model of idiopathic scoliosis. Genes. 2023;14(5):1058. doi: 10.3390/genes14051058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Busse T.M., Roth J.J., Wilmoth D., Wainwright L., Tooke L., Biegel J.A. Copy number alterations determined by single nucleotide polymorphism array testing in the clinical laboratory are indicative of gene fusions in pediatric cancer patients. Genes Chromosomes Cancer. 2017;56(10):730–749. doi: 10.1002/gcc.22477. [DOI] [PubMed] [Google Scholar]
  • 142.Sumida S., Ichimura-Shimizu M., Miyakami Y., Kakimoto T., Kobayashi T., Saijo Y., Matsumoto M., Ogawa H., Oya T., Bando Y., Uehara H., Taira S., Shimada M., Tsuneyama K. Histological and immunohistochemical analysis of epithelial cells in epidermoid cysts in intrapancreatic accessory spleen. J Med Invest. 2023;70(1.2):251–259. doi: 10.2152/jmi.70.251. [DOI] [PubMed] [Google Scholar]
  • 143.Wu C.L.S., Cioanca A.V., Gelmi M.C., Wen L., Di Girolamo N., Zhu L., Natoli R., Conway R.M., Petsoglou C., Jager M.J., McCluskey P.J., Madigan M.C. The multifunctional human ocular melanocortin system. Prog. Retin. Eye Res. 2023;95:101187. doi: 10.1016/j.preteyeres.2023.101187. [DOI] [PubMed] [Google Scholar]
  • 144.Lawton M., Baig F., Toulson G., Morovat A., Evetts S.G., Ben-Shlomo Y., Hu M.T. Blood biomarkers with Parkinson’s disease clusters and prognosis: The oxford discovery cohort. Mov. Disord. 2020;35(2):279–287. doi: 10.1002/mds.27888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Neirijnck Y., Sararols P., Kühne F., Mayère C., Weerasinghe Arachchige L.C., Regard V., Nef S., Schedl A. Single-cell transcriptomic profiling redefines the origin and specification of early adrenogonadal progenitors. Cell Rep. 2023;42(3):112191. doi: 10.1016/j.celrep.2023.112191. [DOI] [PubMed] [Google Scholar]
  • 146.Dhara M., Al Hoque A., Sen R., Dutta D., Mukherjee B., Paul B., Laha S. Phosphorothioated amino-AS1411 aptamer functionalized stealth nanoliposome accelerates bio-therapeutic threshold of apigenin in neoplastic rat liver: A mechanistic approach. J. Nanobiotechnology. 2023;21(1):28. doi: 10.1186/s12951-022-01764-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Liu J., Kong X., Zhang M., Yang X., Xu X. RNA binding protein 24 deletion disrupts global alternative splicing and causes dilated cardiomyopathy. Protein Cell. 2019;10(6):405–416. doi: 10.1007/s13238-018-0578-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Giblin S.P., Pease J.E. What defines a chemokine? – The curious case of CXCL17. Cytokine. 2023;168:156224. doi: 10.1016/j.cyto.2023.156224. [DOI] [PubMed] [Google Scholar]
  • 149.Jin D., Li R., Mao D., Luo N., Wang Y., Chen S., Zhang S. Mitochondria-localized glutamic acid-rich protein (MGARP) gene transcription is regulated by Sp1. PLoS One. 2012;7(11):e50053. doi: 10.1371/journal.pone.0050053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Noel J.G., Ramser S.W., Pitstick L., Bonamer J.P., Mackenzie B., Seu K.G., Kalfa T.A., Cancelas J.A., Gardner J.C. M-CSF supports medullary erythropoiesis and erythroid iron demand following burn injury through its activity on homeostatic iron recycling. Sci. Rep. 2022;12(1):1235. doi: 10.1038/s41598-022-05360-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Lee S., Yang H.K., Lee H.J., Park D.J., Kong S.H., Park S.K. Systematic review of gastric cancer-associated genetic variants, gene-based meta-analysis, and gene-level functional analysis to identify candidate genes for drug development. Front. Genet. 2022;13:928783. doi: 10.3389/fgene.2022.928783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Goshima M., Sekiguchi R., Matsushita M., Nonaka M. The complement system of elasmobranches revealed by liver transcriptome analysis of a hammerhead shark, Sphyrna zygaena. Dev. Comp. Immunol. 2016;61:13–24. doi: 10.1016/j.dci.2016.03.009. [DOI] [PubMed] [Google Scholar]
  • 153.Nedvedova I., Kolar D., Neckar J., Kalous M., Pravenec M., Šilhavý J., Korenkova V., Kolar F., Zurmanova J.M. Cardioprotective regimen of adaptation to chronic hypoxia diversely alters myocardial gene expression in SHR and SHR-mtBN conplastic rat strains. Front. Endocrinol. 2019;9:809. doi: 10.3389/fendo.2018.00809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Gonda X., Eszlari N., Torok D., Gal Z., Bokor J., Millinghoffer A., Baksa D., Petschner P., Antal P., Breen G., Juhasz G., Bagdy G. Genetic underpinnings of affective temperaments: A pilot GWAS investigation identifies a new genome-wide significant SNP for anxious temperament in ADGRB3 gene. Transl. Psychiatry. 2021;11(1):337. doi: 10.1038/s41398-021-01436-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Luo Z., Zhan Z., Qin X., Pan W., Liang M., Li C., Weng S., He J., Guo C. Interaction of teleost fish TRPV4 with DEAD box RNA helicase 1 regulates iridovirus replication. J. Virol. 2023;97(6):e00495–e23. doi: 10.1128/jvi.00495-23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Zhang Y., Cai J., Lu W., Xu S., Qu M., Zhao S., Ding X. Comprehensive network-based analyses reveal novel renal function-related targets in acute kidney injury. Front. Genet. 2022;13:907145. doi: 10.3389/fgene.2022.907145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Kähler A.K., Djurovic S., Rimol L.M., Brown A.A., Athanasiu L., Jönsson E.G., Hansen T., Gústafsson Ó., Hall H., Giegling I., Muglia P., Cichon S., Rietschel M., Pietiläinen O.P.H., Peltonen L., Bramon E., Collier D., Clair D.S., Sigurdsson E., Petursson H., Rujescu D., Melle I., Werge T., Steen V.M., Dale A.M., Matthews R.T., Agartz I., Andreassen O.A. Candidate gene analysis of the human natural killer-1 carbohydrate pathway and perineuronal nets in schizophrenia: B3GAT2 is associated with disease risk and cortical surface area. Biol. Psychiatry. 2011;69(1):90–96. doi: 10.1016/j.biopsych.2010.07.035. [DOI] [PubMed] [Google Scholar]
  • 158.Yuan Z., Li J., Li J., Gao X., Xu S. SNPs identification and its correlation analysis with milk somatic cell score in bovine MBL1 gene. Mol. Biol. Rep. 2013;40(1):7–12. doi: 10.1007/s11033-012-1934-z. [DOI] [PubMed] [Google Scholar]
  • 159.Patyal P., Fil D., Wight P.A. Plp1 in the enteric nervous system is preferentially expressed during early postnatal development in mouse as DM20, whose expression appears reliant on an intronic enhancer. Front. Cell. Neurosci. 2023;17:1175614. doi: 10.3389/fncel.2023.1175614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Sachetto A.T.A., Jensen J.R., Santoro M.L. Liver gene regulation of hemostasis-related factors is altered by experimental snake envenomation in mice. PLoS Negl. Trop. Dis. 2020;14(6):e0008379. doi: 10.1371/journal.pntd.0008379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Birchenough G.M.H., Johansson M.E.V., Stabler R.A., Dalgakiran F., Hansson G.C., Wren B.W., Luzio J.P., Taylor P.W. Altered innate defenses in the neonatal gastrointestinal tract in response to colonization by neuropathogenic Escherichia coli. Infect. Immun. 2013;81(9):3264–3275. doi: 10.1128/IAI.00268-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Chen M., Praetorius J., Zheng W., Xiao F., Riederer B., Singh A.K., Stieger N., Wang J., Shull G.E., Aalkjaer C., Seidler U. The electroneutral Na +:HCO 3− cotransporter NBCn1 is a major pH i regulator in murine duodenum. J. Physiol. 2012;590(14):3317–3333. doi: 10.1113/jphysiol.2011.226506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.de O.C.P., Guarnier F.A., Figueiredo L.B. Identification of potential target genes associated with the reversion of androgen-dependent skeletal muscle atrophy. Arch. Biochem. Biophys. 2019;663:173–182. doi: 10.1016/j.abb.2019.01.009. [DOI] [PubMed] [Google Scholar]
  • 164.Sgro A., Cursons J., Waryah C., Woodward E.A., Foroutan M., Lyu R., Yeoh G.C.T., Leedman P.J., Blancafort P. Epigenetic reactivation of tumor suppressor genes with CRISPRa technologies as precision therapy for hepatocellular carcinoma. Clin. Epigenetics. 2023;15(1):73. doi: 10.1186/s13148-023-01482-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Deng Y., Han Y., Gao S., Dong W., Yu Y. The physiological functions and polymorphisms of type II deiodinase. Endocrinol. Metab. 2023;38(2):190–202. doi: 10.3803/EnM.2022.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Polak J.M., Bloom S.R., Kuzio M., Brown J.C., Pearse A.G.E. Cellular localization of gastric inhibitory polypeptide in the duodenum and jejunum. Gut. 1973;14(4):284–288. doi: 10.1136/gut.14.4.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167.Trachoo O., Assanatham M., Jinawath N., Nongnuch A. Chromosome 20p inverted duplication deletion identified in a Thai female adult with mental retardation, obesity, chronic kidney disease and characteristic facial features. Eur. J. Med. Genet. 2013;56(6):319–324. doi: 10.1016/j.ejmg.2013.03.011. [DOI] [PubMed] [Google Scholar]
  • 168.Lei Z., Rong H., Yang Y., Yu S., Zhang T., Chen L., Nie Y., Song Q., Hu Q., Guo J. Loperamide induces excessive accumulation of bile acids in the liver of mice with different diets. Toxicology. 2022;477:153278. doi: 10.1016/j.tox.2022.153278. [DOI] [PubMed] [Google Scholar]
  • 169.Felts S.K., Treanor L.L., Goodman J.S., Koenig M.G. Serum factors and the reticuloendothelial uptake of Staphylococcus aureus. II. Role of a zymosan-adsorbable serum opsonin. Infect. Immun. 1971;4(6):709–714. doi: 10.1128/iai.4.6.709-714.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170.Hirade Y., Kubota M., Kitae K., Yamamoto H., Omori H., Shinoki S., Ohmura T., Tsujikawa K. A novel application of hectorite nanoclay for preparation of colorectal cancer spheroids with malignant potential. Lab Chip. 2023;23(4):609–623. doi: 10.1039/D2LC00750A. [DOI] [PubMed] [Google Scholar]
  • 171.Yu Y., Wu M., Zhang N., Yin H., Shu B., Duan W. A pilot study on searching for peri-nuclear NeuN-positive cells. Peer J. 2020;8:e8254. doi: 10.7717/peerj.8254. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary material is available on the publisher’s website along with the published article. The raw data were uploaded on July 19, 2023 (Link: https://pan.baidu.com/s/1uOpvEIU_dRYgGmEIWc0SjA?pwd=DWG1 Password: DWG1)

Data Availability Statement

The raw data were uploaded as supplemental materials on the journal’s web.


Articles from Current Genomics are provided here courtesy of Bentham Science Publishers

RESOURCES