Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Jul 15;285(Pt 2):413–417. doi: 10.1042/bj2850413

Activation of 6-phosphofructo-2-kinase by pp60v-src is an indirect effect.

M J Marchand 1, L Maisin 1, L Hue 1, G G Rousseau 1
PMCID: PMC1132804  PMID: 1322131

Abstract

6-Phosphofructo-2-kinase (PFK-2) catalyses the synthesis of fructose 2,6-bisphosphate (Fru-2,6-P2), a potent stimulator of glycolysis. In chick-embryo fibroblasts, PFK-2 activity and Fru-2,6-P2 concentration increase upon transformation by Rous sarcoma virus. We show here that the increase in PFK-2 activity required more than 2 h after shifting fibroblasts infected with a thermosensitive mutant of Rous sarcoma virus from the restrictive to the permissive temperature. Pretreatment of the cells with actinomycin D prevented this increase in PFK-2 activity, suggesting a requirement for RNA synthesis. However, the increase in PFK-2 activity did not correspond to an increase in immunoprecipitable PFK-2. Moreover, the thermostability of PFK-2 and the affinity of this enzyme for its substrate fructose 6-phosphate were increased upon transformation by Rous sarcoma virus. Staurosporine, an inhibitor of protein kinase C, prevented the increase in PFK-2 activity brought about by the shift to the permissive temperature. This, together with a comparison of the effects of phorbol esters on PFK-2 activity, suggests that pp60v-src stimulates, via protein kinase C, the transcription of a gene whose products is a distinct PFK-2 isoenzyme or a protein that activates PFK-2.

Full text

PDF
413

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartrons R., Hue L., Van Schaftingen E., Hers H. G. Hormonal control of fructose 2,6-bisphosphate concentration in isolated rat hepatocytes. Biochem J. 1983 Sep 15;214(3):829–837. doi: 10.1042/bj2140829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bosca L., Mojena M., Ghysdael J., Rousseau G. G., Hue L. Expression of the v-src or v-fps oncogene increases fructose 2,6-bisphosphate in chick-embryo fibroblasts. Novel mechanism for the stimulation of glycolysis by retroviruses. Biochem J. 1986 Jun 1;236(2):595–599. doi: 10.1042/bj2360595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bosca L., Rousseau G. G., Hue L. Phorbol 12-myristate 13-acetate and insulin increase the concentration of fructose 2,6-bisphosphate and stimulate glycolysis in chicken embryo fibroblasts. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6440–6444. doi: 10.1073/pnas.82.19.6440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Cooper J. A., Reiss N. A., Schwartz R. J., Hunter T. Three glycolytic enzymes are phosphorylated at tyrosine in cells transformed by Rous sarcoma virus. Nature. 1983 Mar 17;302(5905):218–223. doi: 10.1038/302218a0. [DOI] [PubMed] [Google Scholar]
  6. Crepin K. M., Darville M. I., Hue L., Rousseau G. G. Characterization of distinct mRNAs coding for putative isozymes of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Eur J Biochem. 1989 Aug 1;183(2):433–440. doi: 10.1111/j.1432-1033.1989.tb14946.x. [DOI] [PubMed] [Google Scholar]
  7. Darville M. I., Chikri M., Lebeau E., Hue L., Rousseau G. G. A rat gene encoding heart 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. FEBS Lett. 1991 Aug 19;288(1-2):91–94. doi: 10.1016/0014-5793(91)81009-w. [DOI] [PubMed] [Google Scholar]
  8. Darville M. I., Crepin K. M., Hue L., Rousseau G. G. 5' flanking sequence and structure of a gene encoding rat 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6543–6547. doi: 10.1073/pnas.86.17.6543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Diringer H., Friis R. R. Changes in phosphatidylinositol metabolism correlated to growth state of normal and Rous sarcoma virus-transformed Japanese quail cells. Cancer Res. 1977 Sep;37(9):2979–2984. [PubMed] [Google Scholar]
  10. Friis R. R. Temperature-sensitive mutants of avian RNA tumor viruses: a review. Curr Top Microbiol Immunol. 1978;79:261–293. doi: 10.1007/978-3-642-66853-1_6. [DOI] [PubMed] [Google Scholar]
  11. Hue L., Rider M. H. Role of fructose 2,6-bisphosphate in the control of glycolysis in mammalian tissues. Biochem J. 1987 Jul 15;245(2):313–324. doi: 10.1042/bj2450313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnson R. M., Wasilenko W. J., Mattingly R. R., Weber M. J., Garrison J. C. Fibroblasts transformed with v-src show enhanced formation of an inositol tetrakisphosphate. Science. 1989 Oct 6;246(4926):121–124. doi: 10.1126/science.2506643. [DOI] [PubMed] [Google Scholar]
  13. Jove R., Hanafusa H. Cell transformation by the viral src oncogene. Annu Rev Cell Biol. 1987;3:31–56. doi: 10.1146/annurev.cb.03.110187.000335. [DOI] [PubMed] [Google Scholar]
  14. Kawai S., Hanafusa H. The effects of reciprocal changes in temperature on the transformed state of cells infected with a rous sarcoma virus mutant. Virology. 1971 Nov;46(2):470–479. doi: 10.1016/0042-6822(71)90047-x. [DOI] [PubMed] [Google Scholar]
  15. Martins T. J., Sugimoto Y., Erikson R. L. Dissociation of inositol trisphosphate from diacylglycerol production in Rous sarcoma virus-transformed fibroblasts. J Cell Biol. 1989 Feb;108(2):683–691. doi: 10.1083/jcb.108.2.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mojena M., Bosca L., Hue L. Effect of glutamine on fructose 2,6-bisphosphate and on glucose metabolism in HeLa cells and in chick-embryo fibroblasts. Biochem J. 1985 Dec 1;232(2):521–527. doi: 10.1042/bj2320521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Presek P., Reinacher M., Eigenbrodt E. Pyruvate kinase type M2 is phosphorylated at tyrosine residues in cells transformed by Rous sarcoma virus. FEBS Lett. 1988 Dec 19;242(1):194–198. doi: 10.1016/0014-5793(88)81014-7. [DOI] [PubMed] [Google Scholar]
  18. Rider M. H., Vandamme J., Lebeau E., Vertommen D., Vidal H., Rousseau G. G., Vandekerckhove J., Hue L. The two forms of bovine heart 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase result from alternative splicing. Biochem J. 1992 Jul 15;285(Pt 2):405–411. doi: 10.1042/bj2850405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Singh M., Singh V. N., August J. T., Horecker B. L. Alterations in glucose metabolism in chick embryo cells transformed by Rous sarcoma virus. Transformation-specific changes in the activities of key enzymes of the glycolytic and hexose monophosphate shunt pathways. Arch Biochem Biophys. 1974 Nov;165(1):240–246. doi: 10.1016/0003-9861(74)90160-x. [DOI] [PubMed] [Google Scholar]
  20. Spangler R., Joseph C., Qureshi S. A., Berg K. L., Foster D. A. Evidence that v-src and v-fps gene products use a protein kinase C-mediated pathway to induce expression of a transformation-related gene. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7017–7021. doi: 10.1073/pnas.86.18.7017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):397–402. doi: 10.1016/0006-291x(86)90008-2. [DOI] [PubMed] [Google Scholar]
  22. Taylor D. J., Evanson J. M., Woolley D. E. Contrasting effects of the protein kinase C inhibitor, staurosporine, on cytokine and phorbol ester stimulation of fructose 2,6-bisphosphate and prostaglandin E production by fibroblasts in vitro. Comparative studies using interleukin-1 alpha, tumour necrosis factor alpha, transforming growth factor beta, interferon-gamma and 12-O-tetradecanoylphorbol 13-acetate. Biochem J. 1990 Aug 1;269(3):573–577. doi: 10.1042/bj2690573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Van Schaftingen E., Hers H. G. Purification and properties of phosphofructokinase 2/fructose 2,6-bisphosphatase from chicken liver and from pigeon muscle. Eur J Biochem. 1986 Sep 1;159(2):359–365. doi: 10.1111/j.1432-1033.1986.tb09876.x. [DOI] [PubMed] [Google Scholar]
  24. Weinhouse S. The Warburg hypothesis fifty years later. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 1976;87(2):115–126. doi: 10.1007/BF00284370. [DOI] [PubMed] [Google Scholar]
  25. Yamada K., Tillotson L. G., Isselbacher K. J. Regulation of hexose carriers in chicken embryo fibroblasts. Effect of glucose starvation and role of protein synthesis. J Biol Chem. 1983 Aug 25;258(16):9786–9792. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES