Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Jul 15;285(Pt 2):441–449. doi: 10.1042/bj2850441

Evidence for G proteins in rat parotid plasma membranes and secretory granule membranes.

E L Watson 1, D DiJulio 1, D Kauffman 1, J Iversen 1, M R Robinovitch 1, K T Izutsu 1
PMCID: PMC1132808  PMID: 1637337

Abstract

G proteins were identified in rat parotid plasma membrane-enriched fractions and in two populations of isolated secretory granule membrane fractions. Both [32P]ADP-ribosylation analysis with bacterial toxins and immunoblot analysis with crude and affinity-purified antisera specific for alpha subunits of G proteins were utilized. Pertussis toxin catalysed the ADP-ribosylation of a 41 kDa substrate in the plasma membrane fraction and both secretory granule membrane fractions. Cholera toxin catalysed the ADP-ribosylation of two substrates with molecular masses of 44 kDa and 48 kDa in the plasma membrane fraction but not in the secretory granule fractions. However, these substrates were detected in the secretory granule fractions when recombinant ADP-ribosylating factor was present in the assay medium. Immunoblot analysis of rat parotid membrane fractions using both affinity-purified and crude antisera revealed strong immunoreactivity of these membranes with anti-Gs alpha, -Gi alpha 1/alpha 2 and -Gi alpha 3 sera. In contrast Gs alpha was the major substrate found in both of the secretory granule fractions. Granule membrane fractions also reacted moderately with anti-Gi alpha 3 antiserum, and weakly with anti-Gi alpha 1/alpha 2 and -G(o) alpha sera. The results demonstrate that the parotid gland membranes express a number of G proteins. The presence of G proteins in secretory granule membranes suggests that they may play a direct role in regulating exocytosis in exocrine glands.

Full text

PDF
441

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad S. N., Alam S. Q., Alam B. S. Effect of ageing on adenylate cyclase activity and G-proteins in rat submandibular salivary glands. Arch Oral Biol. 1990;35(11):885–890. doi: 10.1016/0003-9969(90)90067-k. [DOI] [PubMed] [Google Scholar]
  2. Ambudkar I. S., Horn V. J., Dai Y. S., Baum B. J. Evidence against a role for a pertussis toxin-sensitive G protein in Ca2+ mobilization in rat parotid acinar cells. Biochim Biophys Acta. 1990 Dec 10;1055(3):259–264. doi: 10.1016/0167-4889(90)90041-b. [DOI] [PubMed] [Google Scholar]
  3. Arvan P., Cameron R. S., Castle J. D. Secretory membranes of the rat parotid gland: preparation and comparative characterization. Methods Enzymol. 1983;98:75–87. doi: 10.1016/0076-6879(83)98141-7. [DOI] [PubMed] [Google Scholar]
  4. Arvan P., Castle J. D. Plasma membrane of the rat parotid gland: preparation and partial characterization of a fraction containing the secretory surface. J Cell Biol. 1982 Oct;95(1):8–19. doi: 10.1083/jcb.95.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aub D. L., Putney J. W., Jr Metabolism of inositol phosphates in parotid cells: implications for the pathway of the phosphoinositide effect and for the possible messenger role of inositol trisphosphate. Life Sci. 1984 Apr 2;34(14):1347–1355. doi: 10.1016/0024-3205(84)90006-7. [DOI] [PubMed] [Google Scholar]
  6. Audigier Y., Nigam S. K., Blobel G. Identification of a G protein in rough endoplasmic reticulum of canine pancreas. J Biol Chem. 1988 Nov 5;263(31):16352–16357. [PubMed] [Google Scholar]
  7. BDOLAH A., SCHRAMM M. THE FUNCTION OF 3'5' CYCLIC AMP IN ENZYME SECRETION. Biochem Biophys Res Commun. 1965 Feb 3;18:452–454. doi: 10.1016/0006-291x(65)90730-8. [DOI] [PubMed] [Google Scholar]
  8. Bayerdörffer E., Streb H., Eckhardt L., Haase W., Schulz I. Characterization of calcium uptake into rough endoplasmic reticulum of rat pancreas. J Membr Biol. 1984;81(1):69–82. doi: 10.1007/BF01868811. [DOI] [PubMed] [Google Scholar]
  9. Bobak D. A., Bliziotes M. M., Noda M., Tsai S. C., Adamik R., Moss J. Mechanism of activation of cholera toxin by ADP-ribosylation factor (ARF): both low- and high-affinity interactions of ARF with guanine nucleotides promote toxin activation. Biochemistry. 1990 Jan 30;29(4):855–861. doi: 10.1021/bi00456a600. [DOI] [PubMed] [Google Scholar]
  10. De Lisle R. C., Hopfer U. Electrolyte permeabilities of pancreatic zymogen granules: implications for pancreatic secretion. Am J Physiol. 1986 Apr;250(4 Pt 1):G489–G496. doi: 10.1152/ajpgi.1986.250.4.G489. [DOI] [PubMed] [Google Scholar]
  11. Edelstein S. B., Castiglione C. M., Breakfield X. O. Monoamine oxidase activity in normal and Lesch-Nyhan fibroblasts. J Neurochem. 1978 Nov;31(5):1247–1254. doi: 10.1111/j.1471-4159.1978.tb06249.x. [DOI] [PubMed] [Google Scholar]
  12. FINDLAY J., LEVVY G. A., MARSH C. A. Inhibition of glycosidases by aldonolactones of corresponding configuration. 2. Inhibitors of beta-N-acetylglucosaminidase. Biochem J. 1958 Jul;69(3):467–476. doi: 10.1042/bj0690467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fleming N., Sliwinski-Lis E., Burke D. N. G regulatory proteins and muscarinic receptor signal transduction in mucous acini of rat submandibular gland. Life Sci. 1989;44(15):1027–1035. doi: 10.1016/0024-3205(89)90554-7. [DOI] [PubMed] [Google Scholar]
  14. Gill D. M., Woolkalis M. [32P]ADP-ribosylation of proteins catalyzed by cholera toxin and related heat-labile enterotoxins. Methods Enzymol. 1988;165:235–245. doi: 10.1016/s0076-6879(88)65037-3. [DOI] [PubMed] [Google Scholar]
  15. Gilman A. G. G proteins and dual control of adenylate cyclase. Cell. 1984 Mar;36(3):577–579. doi: 10.1016/0092-8674(84)90336-2. [DOI] [PubMed] [Google Scholar]
  16. Goddard M. K., Izutsu K. T., Johnson D. E., Ensign W. Y., Jr, Izutsu S. M., Wilkinson L. E., Chen S. W., Wong J. L. Evidence for two conductance/exchange pathways for chloride in rat parotid secretory granules. Biochem Biophys Res Commun. 1988 Sep 15;155(2):984–989. doi: 10.1016/s0006-291x(88)80593-x. [DOI] [PubMed] [Google Scholar]
  17. Goud B., Salminen A., Walworth N. C., Novick P. J. A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell. 1988 Jun 3;53(5):753–768. doi: 10.1016/0092-8674(88)90093-1. [DOI] [PubMed] [Google Scholar]
  18. Hancock K., Tsang V. C. India ink staining of proteins on nitrocellulose paper. Anal Biochem. 1983 Aug;133(1):157–162. doi: 10.1016/0003-2697(83)90237-3. [DOI] [PubMed] [Google Scholar]
  19. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  20. Iversen J. M., Kauffman D. L., Keller P. J., Robinovitch M. Isolation and partial characterization of two populations of secretory granules from rat parotid glands. Cell Tissue Res. 1985;240(2):441–447. doi: 10.1007/BF00222357. [DOI] [PubMed] [Google Scholar]
  21. Johnson G. L., Kaslow H. R., Bourne H. R. Genetic evidence that cholera toxin substrates are regulatory components of adenylate cyclase. J Biol Chem. 1978 Oct 25;253(20):7120–7123. [PubMed] [Google Scholar]
  22. Kahn R. A., Gilman A. G. Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J Biol Chem. 1984 May 25;259(10):6228–6234. [PubMed] [Google Scholar]
  23. Kallner A. Determination of phosphate in serum and urine by a single step malachite-green method. Clin Chim Acta. 1975 Feb 22;59(1):35–39. doi: 10.1016/0009-8981(75)90215-6. [DOI] [PubMed] [Google Scholar]
  24. Kim Y. S., Perdomo J., Nordberg J. Glycoprortein biosynthesis in small intestinal mucosa. I. A study of glycosyltransferases in microsomal subfractions. J Biol Chem. 1971 Sep 10;246(17):5466–5476. [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Laniyonu A., Sliwinski-Lis E., Fleming N. Different tachykinin receptor subtypes are coupled to the phosphoinositide or cyclic AMP signal transduction pathways in rat submandibular cells. FEBS Lett. 1988 Nov 21;240(1-2):186–190. doi: 10.1016/0014-5793(88)80365-x. [DOI] [PubMed] [Google Scholar]
  27. Lochrie M. A., Simon M. I. G protein multiplicity in eukaryotic signal transduction systems. Biochemistry. 1988 Jul 12;27(14):4957–4965. doi: 10.1021/bi00414a001. [DOI] [PubMed] [Google Scholar]
  28. Milligan G. Techniques used in the identification and analysis of function of pertussis toxin-sensitive guanine nucleotide binding proteins. Biochem J. 1988 Oct 1;255(1):1–13. doi: 10.1042/bj2550001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nigam S. K. Subcellular distribution of small GTP binding proteins in pancreas: identification of small GTP binding proteins in the rough endoplasmic reticulum. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1296–1299. doi: 10.1073/pnas.87.4.1296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Padfield P. J., Jamieson J. D. Low molecular weight GTP-binding proteins associated with zymogen granule membranes from rat pancreas. Biochem Biophys Res Commun. 1991 Jan 31;174(2):600–605. doi: 10.1016/0006-291x(91)91459-p. [DOI] [PubMed] [Google Scholar]
  31. Robinovitch M. R., Iversen J. M., Oberg S. G. Isolation and partial characterization of secretory granule membranes from the rat parotid gland. Arch Oral Biol. 1980;25(8-9):523–530. doi: 10.1016/0003-9969(80)90064-3. [DOI] [PubMed] [Google Scholar]
  32. Robinovitch M. R., Sreebny L. M. On the nature of the molecular heterogeneity of rat parotid amylase. Arch Oral Biol. 1972 Mar;17(3):595–600. doi: 10.1016/0003-9969(72)90077-5. [DOI] [PubMed] [Google Scholar]
  33. Rotrosen D., Gallin J. I., Spiegel A. M., Malech H. L. Subcellular localization of Gi alpha in human neutrophils. J Biol Chem. 1988 Aug 5;263(22):10958–10964. [PubMed] [Google Scholar]
  34. SWANSON M. A. Phosphatases of liver. I. Glucose-6-phosphatase. J Biol Chem. 1950 Jun;184(2):647–659. [PubMed] [Google Scholar]
  35. Schnefel S., Pröfrock A., Hinsch K. D., Schulz I. Cholecystokinin activates Gi1-, Gi2-, Gi3- and several Gs-proteins in rat pancreatic acinar cells. Biochem J. 1990 Jul 15;269(2):483–488. doi: 10.1042/bj2690483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Simonds W. F., Goldsmith P. K., Codina J., Unson C. G., Spiegel A. M. Gi2 mediates alpha 2-adrenergic inhibition of adenylyl cyclase in platelet membranes: in situ identification with G alpha C-terminal antibodies. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7809–7813. doi: 10.1073/pnas.86.20.7809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Spearman T. N., Durham J. P., Butcher F. R. Cyclic AMP in the regulation of exocytosis in the rat parotid gland. Evidence obtained with cholera toxin. Biochim Biophys Acta. 1983 Aug 23;759(1-2):117–124. doi: 10.1016/0304-4165(83)90196-4. [DOI] [PubMed] [Google Scholar]
  38. Taylor C. W., Merritt J. E., Putney J. W., Jr, Rubin R. P. A guanine nucleotide-dependent regulatory protein couples substance P receptors to phospholipase C in rat parotid gland. Biochem Biophys Res Commun. 1986 Apr 14;136(1):362–368. doi: 10.1016/0006-291x(86)90919-8. [DOI] [PubMed] [Google Scholar]
  39. Terashima T., Katada T., Oinuma M., Inoue Y., Ui M. Endocrine cells in pancreatic islets of Langerhans are immunoreactive to antibody against guanine nucleotide-binding protein (Go) purified from rat brain. Brain Res. 1987 Aug 4;417(1):190–194. doi: 10.1016/0006-8993(87)90199-5. [DOI] [PubMed] [Google Scholar]
  40. Thévenod F., Gasser K. W., Hopfer U. Dual modulation of chloride conductance by nucleotides in pancreatic and parotid zymogen granules. Biochem J. 1990 Nov 15;272(1):119–126. doi: 10.1042/bj2720119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Toutant M., Aunis D., Bockaert J., Homburger V., Rouot B. Presence of three pertussis toxin substrates and Go alpha immunoreactivity in both plasma and granule membranes of chromaffin cells. FEBS Lett. 1987 May 11;215(2):339–344. doi: 10.1016/0014-5793(87)80174-6. [DOI] [PubMed] [Google Scholar]
  42. Tsai S. C., Noda M., Adamik R., Chang P. P., Chen H. C., Moss J., Vaughan M. Stimulation of choleragen enzymatic activities by GTP and two soluble proteins purified from bovine brain. J Biol Chem. 1988 Feb 5;263(4):1768–1772. [PubMed] [Google Scholar]
  43. Volpp B. D., Nauseef W. M., Clark R. A. Subcellular distribution and membrane association of human neutrophil substrates for ADP-ribosylation by pertussis toxin and cholera toxin. J Immunol. 1989 May 1;142(9):3206–3212. [PubMed] [Google Scholar]
  44. Weiss O., Holden J., Rulka C., Kahn R. A. Nucleotide binding and cofactor activities of purified bovine brain and bacterially expressed ADP-ribosylation factor. J Biol Chem. 1989 Dec 15;264(35):21066–21072. [PubMed] [Google Scholar]
  45. YONETANI T., RAY G. S. STUDIES ON CYTOCHROME OXIDASE. VI. KINETICS OF THE AEROBIC OXIDATION OF FERROCYTOCHROME C BY CYTOCHROME OXIDASE. J Biol Chem. 1965 Aug;240:3392–3398. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES