Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Jul 15;285(Pt 2):469–475. doi: 10.1042/bj2850469

Growth-hormone-prolactin interactions in the regulation of mammary and adipose-tissue acetyl-CoA carboxylase activity and gene expression in lactating rats.

M C Barber 1, M T Travers 1, E Finley 1, D J Flint 1, R G Vernon 1
PMCID: PMC1132811  PMID: 1353348

Abstract

The factors and mechanisms responsible for the reciprocal changes in lipogenesis in rat mammary gland and adipose tissue during the lactation cycle have been investigated. Lactation decreased the activation status and mRNA concentration of acetyl-CoA carboxylase in adipose tissue. Litter removal decreased the mRNA concentration of acetyl-CoA carboxylase in the mammary gland and increased the enzyme's mRNA concentration and activation status in adipose tissue. Lowering serum prolactin concentration in lactating rats decreased the amount of mammary acetyl-CoA carboxylase mRNA and increased that of adipose tissue, and increased the activation status of the enzyme in adipose tissue. Decreasing serum growth hormone (GH) alone had little effect on acetyl-CoA carboxylase in lactating rats, although it did lower pup growth rate and serum concentration of insulin-like growth factor-I. Lowering serum GH concentration exacerbated the effects of decreasing serum prolactin on mammary-gland (but not adipose-tissue) acetyl-CoA carboxylase mRNA and further increased the rise in activation status of the adipose-tissue enzyme induced by decreasing serum prolactin. Changes in acetyl-CoA carboxylase mRNA in both mammary and adipose tissue were paralleled by changes in total enzyme activity except after litter removal, when there was a disproportionately large decrease in total enzyme activity of the mammary gland. Thus prolactin has a major and GH a minor role in the regulation of acetyl-CoA carboxylase activity during lactation. Changes in mammary activity in response to prolactin and GH are primarily due to alterations in gene transcription, whereas adaptation in adipose tissue involves both changes in gene transcription and activation status.

Full text

PDF
469

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agius L., Robinson A. M., Girard J. R., Williamson D. H. Alterations in the rate of lipogenesis in vivo in maternal liver and adipose tissue on premature weaning of lactating rats: a possible regulatory role of prolactin. Biochem J. 1979 Jun 15;180(3):689–692. doi: 10.1042/bj1800689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aitchison R. E., Clegg R. A., Vernon R. G. Lipolysis in rat adipocytes during pregnancy and lactation. The response to noradrenaline. Biochem J. 1982 Jan 15;202(1):243–247. doi: 10.1042/bj2020243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bai D. H., Pape M. E., López-Casillas F., Luo X. C., Dixon J. E., Kim K. H. Molecular cloning of cDNA for acetyl-coenzyme A carboxylase. J Biol Chem. 1986 Sep 15;261(26):12395–12399. [PubMed] [Google Scholar]
  5. Barber M. C., Finley E., Vernon R. G. Mechanisms whereby prolactin modulates lipogenesis in sheep mammary gland. Horm Metab Res. 1991 Mar;23(3):143–145. doi: 10.1055/s-2007-1003636. [DOI] [PubMed] [Google Scholar]
  6. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  7. Clegg R. A. Regulation of fatty acid uptake and synthesis in mammary and adipose tissues: contrasting roles for cyclic AMP. Curr Top Cell Regul. 1988;29:77–128. doi: 10.1016/b978-0-12-152829-4.50005-7. [DOI] [PubMed] [Google Scholar]
  8. Cohen P., Hardie D. G. The actions of cyclic AMP on biosynthetic processes are mediated indirectly by cyclic AMP-dependent protein kinase. Biochim Biophys Acta. 1991 Sep 24;1094(3):292–299. doi: 10.1016/0167-4889(91)90089-g. [DOI] [PubMed] [Google Scholar]
  9. Davies S. P., Carling D., Hardie D. G. Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic-AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur J Biochem. 1989 Dec 8;186(1-2):123–128. doi: 10.1111/j.1432-1033.1989.tb15185.x. [DOI] [PubMed] [Google Scholar]
  10. Easom R. A., Zammit V. A. Diurnal changes in the fraction of 3-hydroxy-3-methylglutaryl-CoA reductase in the active form in rat liver microsomal fractions. Biochem J. 1984 Jun 15;220(3):739–745. doi: 10.1042/bj2200739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Flint D. J., Clegg R. A., Vernon R. G. Prolactin and the regulation of adipose-tissue metabolism during lactation in rats. Mol Cell Endocrinol. 1981 May;22(2):265–275. doi: 10.1016/0303-7207(81)90096-4. [DOI] [PubMed] [Google Scholar]
  12. Flint D. J., Sinnett-Smith P. A., Clegg R. A., Vernon R. G. Role of insulin receptors in the changing metabolism of adipose tissue during pregnancy and lactation in the rat. Biochem J. 1979 Aug 15;182(2):421–427. doi: 10.1042/bj1820421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Graham M. E., Finley E., Vernon R. G. Factors controlling insulin resistance in white adipose tissue of lactating rats. Biochem Soc Trans. 1990 Jun;18(3):492–493. doi: 10.1042/bst0180492. [DOI] [PubMed] [Google Scholar]
  15. Hardie D. G. Regulation of fatty acid synthesis via phosphorylation of acetyl-CoA carboxylase. Prog Lipid Res. 1989;28(2):117–146. doi: 10.1016/0163-7827(89)90010-6. [DOI] [PubMed] [Google Scholar]
  16. Luo X. C., Kim K. H. An enhancer element in the house-keeping promoter for acetyl-CoA carboxylase gene. Nucleic Acids Res. 1990 Jun 11;18(11):3249–3254. doi: 10.1093/nar/18.11.3249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. López-Casillas F., Bai D. H., Luo X. C., Kong I. S., Hermodson M. A., Kim K. H. Structure of the coding sequence and primary amino acid sequence of acetyl-coenzyme A carboxylase. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5784–5788. doi: 10.1073/pnas.85.16.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. López-Casillas F., Ponce-Castañeda M. V., Kim K. H. In vivo regulation of the activity of the two promoters of the rat acetyl coenzyme-A carboxylase gene. Endocrinology. 1991 Aug;129(2):1049–1058. doi: 10.1210/endo-129-2-1049. [DOI] [PubMed] [Google Scholar]
  19. Mackall J. C., Lane M. D. Changes in mammary-gland acetyl-coenzyme A carboxylase associated with lactogenic differentiation. Biochem J. 1977 Mar 15;162(3):635–642. doi: 10.1042/bj1620635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Madon R. J., Ensor D. M., Knight C. H., Flint D. J. Effects of an antiserum to rat growth hormone on lactation in the rat. J Endocrinol. 1986 Oct;111(1):117–123. doi: 10.1677/joe.0.1110117. [DOI] [PubMed] [Google Scholar]
  21. McNeillie E. M., Zammit V. A. Regulation of acetyl-CoA carboxylase in rat mammary gland. Effects of starvation and of insulin and prolactin deficiency on the fraction of the enzyme in the active form in vivo. Biochem J. 1982 Apr 15;204(1):273–280. doi: 10.1042/bj2040273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Munday M. R., Williamson D. H. Effects of starvation, insulin or prolactin deficiency on the activity of acetyl-CoA carboxylase in mammary gland and liver of lactating rats. FEBS Lett. 1982 Feb 22;138(2):285–288. doi: 10.1016/0014-5793(82)80462-6. [DOI] [PubMed] [Google Scholar]
  24. Oller do Nascimento C. M., Ilic V., Williamson D. H. Re-examination of the putative roles of insulin and prolactin in the regulation of lipid deposition and lipogenesis in vivo in mammary gland and white and brown adipose tissue of lactating rats and litter-removed rats. Biochem J. 1989 Feb 15;258(1):273–278. doi: 10.1042/bj2580273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pape M. E., Kim K. H. Transcriptional regulation of acetyl coenzyme A carboxylase gene expression by tumor necrosis factor in 30A-5 preadipocytes. Mol Cell Biol. 1989 Mar;9(3):974–982. doi: 10.1128/mcb.9.3.974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Peel C. J., Bauman D. E. Somatotropin and lactation. J Dairy Sci. 1987 Feb;70(2):474–486. doi: 10.3168/jds.S0022-0302(87)80030-9. [DOI] [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sinnett-Smith P. A., Vernon R. G., Mayer R. J. Lipogenic enzymes in rat maternal adipose tissue in the perinatal period. Biochem J. 1980 Mar 15;186(3):937–944. doi: 10.1042/bj1860937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tindall K. R., Kunkel T. A. Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry. 1988 Aug 9;27(16):6008–6013. doi: 10.1021/bi00416a027. [DOI] [PubMed] [Google Scholar]
  30. Vernon R. G., Finley E., Flint D. J. Role of growth hormone in the adaptations of lipolysis in rat adipocytes during recovery from lactation. Biochem J. 1987 Mar 15;242(3):931–934. doi: 10.1042/bj2420931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vernon R. G., Flint D. J. Control of fatty acid synthesis in lactation. Proc Nutr Soc. 1983 Jun;42(2):315–331. doi: 10.1079/pns19830035. [DOI] [PubMed] [Google Scholar]
  32. Volpe J. J., Vagelos P. R. Mechanisms and regulation of biosynthesis of saturated fatty acids. Physiol Rev. 1976 Apr;56(2):339–417. doi: 10.1152/physrev.1976.56.2.339. [DOI] [PubMed] [Google Scholar]
  33. Williamson D. H. Regulation of metabolism during lactation in the rat. Reprod Nutr Dev. 1986;26(2B):597–603. doi: 10.1051/rnd:19860409. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES