Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Jul 15;285(Pt 2):551–556. doi: 10.1042/bj2850551

Kinetic studies of the polygalacturonase enzyme from Colletotrichum lindemuthianum.

G Waksman 1, G Turner 1, A R Walmsley 1
PMCID: PMC1132823  PMID: 1637345

Abstract

The intrinsic protein fluorescence of the polygalacturonase from Colletotrichium lindemuthianum was exploited in stopped-flow experiments aimed at elucidating the kinetic mechanism for this enzyme. Binding of the polymeric substrate polygalacturonic acid (PGA) essentially produced a triphasic fluorescence profile. There was an initial rapid quench in fluorescence, consistent with the rapid formation of the enzyme-substrate complex, with an equilibrium constant of about 8 x 10(-4)% (w/v) PGA (about 0.27 microM). There then followed a near-constant fluorescence phase, attributable to turnover of the enzyme-substrate complex as a steady-state intermediate. As the concentration of the steady-state intermediate became depleted, towards the end of the reaction, there was a partial return of the fluorescence intensity. This phase is attributed to a final, single turnover of the enzyme at the end of the reaction. The fluorescence intensity does not return to its original level due to product remaining bound at the end of the reaction.

Full text

PDF
551

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bussink H. J., Kester H. C., Visser J. Molecular cloning, nucleotide sequence and expression of the gene encoding prepro-polygalacturonaseII of Aspergillus niger. FEBS Lett. 1990 Oct 29;273(1-2):127–130. doi: 10.1016/0014-5793(90)81066-w. [DOI] [PubMed] [Google Scholar]
  2. Cervone F., De Lorenzo G., Degrà L., Salvi G., Bergami M. Purification and Characterization of a Polygalacturonase-Inhibiting Protein from Phaseolus vulgaris L. Plant Physiol. 1987 Nov;85(3):631–637. doi: 10.1104/pp.85.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cervone F., Hahn M. G., De Lorenzo G., Darvill A., Albersheim P. Host-Pathogen Interactions : XXXIII. A Plant Protein Converts a Fungal Pathogenesis Factor into an Elicitor of Plant Defense Responses. Plant Physiol. 1989 Jun;90(2):542–548. doi: 10.1104/pp.90.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DEMAIN A. L., PHAFF H. J. Hydrolysis of the oligogalacturonides and pectic acid by yeast polygalacturonase. J Biol Chem. 1954 Sep;210(1):381–393. [PubMed] [Google Scholar]
  5. Daboussi M. J., Djeballi A., Gerlinger C., Blaiseau P. L., Bouvier I., Cassan M., Lebrun M. H., Parisot D., Brygoo Y. Transformation of seven species of filamentous fungi using the nitrate reductase gene of Aspergillus nidulans. Curr Genet. 1989 Jun;15(6):453–456. doi: 10.1007/BF00376803. [DOI] [PubMed] [Google Scholar]
  6. Keon J. P., Waksman G. Common amino acid domain among endopolygalacturonases of ascomycete fungi. Appl Environ Microbiol. 1990 Aug;56(8):2522–2528. doi: 10.1128/aem.56.8.2522-2528.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rexová-Benková L. The size of the substrate-binding site of an Aspergillus niger extracellular endopolygalacturonase. Eur J Biochem. 1973 Nov 1;39(1):109–115. doi: 10.1111/j.1432-1033.1973.tb03109.x. [DOI] [PubMed] [Google Scholar]
  8. Waksman G., Keon J. P., Turner G. Purification and characterization of two endopolygalacturonases from Sclerotinia sclerotiorum. Biochim Biophys Acta. 1991 Jan 23;1073(1):43–48. doi: 10.1016/0304-4165(91)90180-o. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES