Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Jul 15;285(Pt 2):577–583. doi: 10.1042/bj2850577

Effects of detergent on the sulphation of chondroitin by cell-free preparations from chick-embryo epiphyseal cartilage.

G Sugumaran 1, J E Silbert 1
PMCID: PMC1132827  PMID: 1637348

Abstract

The effects of the non-ionic detergent Triton X-100 on 6-sulphation of two species of endogenous nascent proteochondroitin by a chick-embryo cartilage microsomal system was examined. Sulphation of the larger (Type I) species with adenosine 3'-phosphate 5'-phosphosulphate was slightly diminished when Triton X-100 was present, whereas sulphation of the smaller (Type II) species was slightly enhanced. An ordered rather than random pattern of sulphation was obtained for the smaller proteoglycan, but with a considerably lower degree of sulphation than that of the larger proteochondroitin. These differences were consistent with other differences between these two species as described previously. Sulphation of exogenous [14C]chondroitin and exogenous proteo[3H]chondroitin by the microsomal system with Triton X-100 present produced ordered rather than random sulphation patterns. When a 100,000 g supernatant fraction was utilized for sulphation of [14C]chondroitin or proteo[3H]chondroitin, Triton X-100 was not needed, and ordered sulphation was still obtained. When hexasaccharide was used, sulphation of multiple N-acetylgalactosamine residues of the individual hexasaccharides resulted. This was relatively independent of Triton X-100 or the concentration of the hexasaccharide acceptors. With soluble enzyme, sulphation of multiple N-acetylgalactosamine residues on the individual hexasaccharide molecules was even greater, so that tri-sulphated products were found. This suggests that ordered rather than random sulphation of chondroitin with these enzyme preparations is due to enzyme-substrate interaction rather than to membrane organization.

Full text

PDF
577

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DeLuca S., Richmond M. E., Silbert J. E. Biosynthesis of chondroitin sulfate. Sulfation of the polysaccharide chain. Biochemistry. 1973 Sep 25;12(20):3911–3915. doi: 10.1021/bi00744a019. [DOI] [PubMed] [Google Scholar]
  2. DeLuca S., Silbert J. E. Biosynthesis of chondroitin sulfate. II. Incorporation of sulfate-35S into microsomal chondroitin sulfate. J Biol Chem. 1968 May 25;243(10):2725–2729. [PubMed] [Google Scholar]
  3. Delfert D. M., Conrad H. E. Sulfation of chondroitin oligosaccharides in vitro. Analysis of sulfation ratios. J Biol Chem. 1985 Nov 25;260(27):14446–14451. [PubMed] [Google Scholar]
  4. Faltynek C. R., Silbert J. E. Biosynthesis of chondroitin sulfate. Proteoglycans at the microsomal site of glycosaminoglycan formation. J Biol Chem. 1981 Jul 25;256(14):7203–7206. [PubMed] [Google Scholar]
  5. Habuchi H., Kimata K., Suzuki S. Changes in proteoglycan composition during development of rat skin. The occurrence in fetal skin of a chondroitin sulfate proteoglycan with high turnover rate. J Biol Chem. 1986 Jan 25;261(3):1031–1040. [PubMed] [Google Scholar]
  6. Kimata K., Oike Y., Tani K., Shinomura T., Yamagata M., Uritani M., Suzuki S. A large chondroitin sulfate proteoglycan (PG-M) synthesized before chondrogenesis in the limb bud of chick embryo. J Biol Chem. 1986 Oct 15;261(29):13517–13525. [PubMed] [Google Scholar]
  7. Lewis R. G., Spencer A. F., Silbert J. E. Biosynthesis of glycosoaminoglycans by microsomal preparations from cultured mastocytoma cells. Biochem J. 1973 Jun;134(2):465–471. doi: 10.1042/bj1340465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lidholt K., Kjellén L., Lindahl U. Biosynthesis of heparin. Relationship between the polymerization and sulphation processes. Biochem J. 1989 Aug 1;261(3):999–1007. doi: 10.1042/bj2610999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lidholt K., Riesenfeld J., Jacobsson K. G., Feingold D. S., Lindahl U. Biosynthesis of heparin. Modulation of polysaccharide chain length in a cell-free system. Biochem J. 1988 Sep 1;254(2):571–578. doi: 10.1042/bj2540571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Noro A., Kimata K., Oike Y., Shinomura T., Maeda N., Yano S., Takahashi N., Suzuki S. Isolation and characterization of a third proteoglycan (PG-Lt) from chick embryo cartilage which contains disulfide-bonded collagenous polypeptide. J Biol Chem. 1983 Aug 10;258(15):9323–9331. [PubMed] [Google Scholar]
  11. Richmond M. E., DeLuca S., Silbert J. E. Biosynthesis of chondroitin sulfate. Assembly of chondroitin on microsomal primers. Biochemistry. 1973 Sep 25;12(20):3904–3910. doi: 10.1021/bi00744a018. [DOI] [PubMed] [Google Scholar]
  12. SILBERT J. E. INCORPORATION OF 14C AND 3H FROM LABELED NUCLEOTIDE SUGARS INTO A POLYSACCHARIDE IN THE PRESENCE OF A CELL-FREE PREPARATION FROM CARTILAGE. J Biol Chem. 1964 May;239:1310–1315. [PubMed] [Google Scholar]
  13. Saito H., Yamagata T., Suzuki S. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J Biol Chem. 1968 Apr 10;243(7):1536–1542. [PubMed] [Google Scholar]
  14. Shinomura T., Kimata K., Oike Y., Noro A., Hirose N., Tanabe K., Suzuki S. The occurrence of three different proteoglycan species in chick embryo cartilage. Isolation and characterization of a second proteoglycan (PG-Lb) and its precursor form. J Biol Chem. 1983 Aug 10;258(15):9314–9322. [PubMed] [Google Scholar]
  15. Sugumaran G., Cogburn J. N., Silbert J. E. Simultaneous sulfation of endogenous chondroitin sulfate and chondroitin-derived oligosaccharides. Studies with separate 4-sulfating and 6-sulfating microsomal systems. J Biol Chem. 1986 Sep 25;261(27):12659–12664. [PubMed] [Google Scholar]
  16. Sugumaran G., Pisoni R. L., Silbert J. E. Biosynthesis of proteochondroitin sulfate: substrate requirements for formation of two independent species. Carbohydr Res. 1986 Aug 15;151:185–195. doi: 10.1016/s0008-6215(00)90339-2. [DOI] [PubMed] [Google Scholar]
  17. Sugumaran G., Silbert J. E. Biosynthesis of chondroitin sulfate. Organization of sulfation. J Biol Chem. 1989 Mar 5;264(7):3864–3868. [PubMed] [Google Scholar]
  18. Sugumaran G., Silbert J. E. Formation of two species of nascent proteochondroitin in separate loci of a microsomal preparation from chick-embryo epiphyseal cartilage. Biochem J. 1991 Aug 1;277(Pt 3):787–793. doi: 10.1042/bj2770787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sugumaran G., Silbert J. E. Relationship of sulfation to ongoing chondroitin polymerization during biosynthesis of chondroitin 4-sulfate by microsomal preparations from cultured mouse mastocytoma cells. J Biol Chem. 1990 Oct 25;265(30):18284–18288. [PubMed] [Google Scholar]
  20. Sugumaran G., Silbert J. E. Subfractionation of chick embryo epiphyseal cartilage Golgi. Localization of enzymes involved in the synthesis of the polysaccharide portion of proteochondroitin sulfate. J Biol Chem. 1991 May 25;266(15):9565–9569. [PubMed] [Google Scholar]
  21. Sugumaran G., Silbert J. E. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems. J Biol Chem. 1988 Apr 5;263(10):4673–4678. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES