Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Jul 15;285(Pt 2):647–653. doi: 10.1042/bj2850647

Metabolism of R- and S-1,3-butanediol in perfused livers from meal-fed and starved rats.

S Desrochers 1, F David 1, M Garneau 1, M Jetté 1, H Brunengraber 1
PMCID: PMC1132838  PMID: 1637355

Abstract

The metabolism of millimolar concentrations of R- or S-1,3-butanediol has been studied in perfused livers from fed and starved rats. Protocols were designed to measure in the same experiment (i) uptake of the diol, (ii) the contribution of the diol to ketogenesis, (iii) the contribution of the diol to total fatty acid plus sterol synthesis, and (iv) conversion of S-1,3-butanediol into S-3-hydroxybutyrate. Our data show that R- and S-1,3-butanediol are taken up by the liver at the same rate. Most of the metabolism of R-1,3-butanediol is accounted for by conversion to the physiological ketone bodies R-3-hydroxybutyrate and acetoacetate. Only 29-38% of S-1,3-butanediol uptake is accounted for by conversion into physiological ketone bodies. The balance of S-1,3-butanediol metabolism is conversion to S-3-hydroxybutyrate, lipids and CO2.

Full text

PDF
647

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen J. M., Dietschy J. M. Absolute rates of cholesterol synthesis in extrahepatic tissues measured with 3H-labeled water and 14C-labeled substrates. J Lipid Res. 1979 Aug;20(6):740–752. [PubMed] [Google Scholar]
  2. Brunengraber H., Boutry M., Lowenstein J. M. Fatty acid and 3- -hydroxysterol synthesis in the perfused rat liver. Including measurements on the production of lactate, pyruvate, -hydroxy-butyrate, and acetoacetate by the fed liver. J Biol Chem. 1973 Apr 25;248(8):2656–2669. [PubMed] [Google Scholar]
  3. Brunengraber H., Sabine J. R., Boutry M., Lowenstein J. M. 3- -Hydroxysterol synthesis by the liver. Arch Biochem Biophys. 1972 Jun;150(2):392–396. doi: 10.1016/0003-9861(72)90054-9. [DOI] [PubMed] [Google Scholar]
  4. Des Rosiers C., Montgomery J. A., Desrochers S., Garneau M., David F., Mamer O. A., Brunengraber H. Interference of 3-hydroxyisobutyrate with measurements of ketone body concentration and isotopic enrichment by gas chromatography-mass spectrometry. Anal Biochem. 1988 Aug 15;173(1):96–105. doi: 10.1016/0003-2697(88)90165-0. [DOI] [PubMed] [Google Scholar]
  5. Desrochers S., Montgomery J. A., Des Rosiers C., Lincoln B. C., Brunengraber H. Quantitation of 1,3-butanediol and its acidic metabolites by gas chromatography-mass spectrometry. Anal Biochem. 1990 Apr;186(1):101–107. doi: 10.1016/0003-2697(90)90580-3. [DOI] [PubMed] [Google Scholar]
  6. Endemann G., Goetz P. G., Edmond J., Brunengraber H. Lipogenesis from ketone bodies in the isolated perfused rat liver. Evidence for the cytosolic activation of acetoacetate. J Biol Chem. 1982 Apr 10;257(7):3434–3440. [PubMed] [Google Scholar]
  7. Gavino V. C., Somma J., Philbert L., David F., Garneau M., Bélair J., Brunengraber H. Production of acetone and conversion of acetone to acetate in the perfused rat liver. J Biol Chem. 1987 May 15;262(14):6735–6740. [PubMed] [Google Scholar]
  8. Kies C., Tobin R. B., Fox H. M., Mehlman M. A. Utilization of 1,3-butanediol and nonspecific nitrogen in human adults. J Nutr. 1973 Aug;103(8):1155–1163. doi: 10.1093/jn/103.8.1155. [DOI] [PubMed] [Google Scholar]
  9. Kopito R. R., Weinstock S. B., Freed L. E., Murray D. M., Brunengraber H. Metabolism of plasma mevalonate in rats and humans. J Lipid Res. 1982 May;23(4):577–583. [PubMed] [Google Scholar]
  10. LEHNINGER A. L., GREVILLE G. D. The enzymic oxidation of alpha- and 2-beta-hydroxybutyrate. Biochim Biophys Acta. 1953 Sep-Oct;12(1-2):188–202. doi: 10.1016/0006-3002(53)90138-3. [DOI] [PubMed] [Google Scholar]
  11. Lincoln B. C., Des Rosiers C., Brunengraber H. Metabolism of S-3-hydroxybutyrate in the perfused rat liver. Arch Biochem Biophys. 1987 Nov 15;259(1):149–156. doi: 10.1016/0003-9861(87)90480-2. [DOI] [PubMed] [Google Scholar]
  12. Majchrowicz E., Hunt W. A., Piantadosi C. Suppression by 1,3-butanediol of the ethanol withdrawal syndrome in rats. Science. 1976 Dec 10;194(4270):1181–1182. doi: 10.1126/science.1033604. [DOI] [PubMed] [Google Scholar]
  13. Mayes P. A., Felts J. M. Determination of 14C-labelled ketone bodies by liquid-scintillation counting. Biochem J. 1967 Jan;102(1):230–235. doi: 10.1042/bj1020230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miller S. A., Dymsza H. A. Utilization by the rat of 1,3-butanediol as a synthetic source of dietary energy. J Nutr. 1967 Jan;91(1):79–88. doi: 10.1093/jn/91.1.79. [DOI] [PubMed] [Google Scholar]
  15. Münst G., Ris-Steiger M. M., Galeazzi R. L., von Wartburg J. P., Bircher J. The fate of the ethanol analogue 1,3-butanediol in the dog. An in vivo-in vitro comparison. Biochem Pharmacol. 1981 Jul 15;30(14):1987–1997. doi: 10.1016/0006-2952(81)90210-0. [DOI] [PubMed] [Google Scholar]
  16. Passingham B. J., Barton R. N. An ensymic method for the preparation of millimole quantities of D(minus)-beta-hydroxybutyrate. Anal Biochem. 1975 May 12;65(1-2):418–421. doi: 10.1016/0003-2697(75)90527-8. [DOI] [PubMed] [Google Scholar]
  17. Scofield R. F., Brady P. S., Schumann W. C., Kumaran K., Ohgaku S., Margolis J. M., Landau B. R. On the lack of formation of L-(+)-3-hydroxybutyrate by liver. Arch Biochem Biophys. 1982 Mar;214(1):268–272. doi: 10.1016/0003-9861(82)90030-3. [DOI] [PubMed] [Google Scholar]
  18. Spence C. A., Boyd R. D., Wray C. D., Whitehead D. M. Effect of 1,3-butanediol and short chain acids in sow gestation diets on maternal plasma metabolites and fetal energy storage. J Anim Sci. 1985 May;60(5):1280–1287. doi: 10.2527/jas1985.6051280x. [DOI] [PubMed] [Google Scholar]
  19. Tobin R. B., Mehlman M. A., Kies C., Fox H. M., Soeldner J. S. Nutritional and metabolic studies in humans with 1,3-butanediol. Fed Proc. 1975 Nov;34(12):2171–2176. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES