Abstract
Glucosone has been identified as the main intermediate sugar moiety product of the copper(II)-catalysed autoxidation of the Amadori compound [Kawakishi, Tsunehiro & Uchida (1991) Carbohydr. Res. 211, 167-171]. Oxidative fragmentation of the model protein, especially selective degradation of the histidine residue in protein or peptides mediated by the copper(II)-catalysed autoxidation of glucosone, is discussed in this paper. The oxidative damage to protein could be retarded by catalase (EC 1.11.1.16) and EDTA, while superoxide dismutase (EC 1.15.1.1) and hydroxyradical scavengers showed little effect. Through the process of the oxidative degradation of N-benzoylhistidine and other histidine-containing peptides, the oxidation of the imidazole ring in histidine caused by the glucosone-copper(II) system was the same as that by the ascorbate-copper(II) system. These facts suggest that the copper-catalysed autoxidation of glucosone could generate some active-oxygen species causing oxidative damage to protein similar to that caused by the ascorbate-copper(II) system.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmed M. U., Dunn J. A., Walla M. D., Thorpe S. R., Baynes J. W. Oxidative degradation of glucose adducts to protein. Formation of 3-(N epsilon-lysino)-lactic acid from model compounds and glycated proteins. J Biol Chem. 1988 Jun 25;263(18):8816–8821. [PubMed] [Google Scholar]
- Ahmed M. U., Thorpe S. R., Baynes J. W. Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem. 1986 Apr 15;261(11):4889–4894. [PubMed] [Google Scholar]
- Baynes J. W. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991 Apr;40(4):405–412. doi: 10.2337/diab.40.4.405. [DOI] [PubMed] [Google Scholar]
- Brownlee M., Cerami A., Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988 May 19;318(20):1315–1321. doi: 10.1056/NEJM198805193182007. [DOI] [PubMed] [Google Scholar]
- Brownlee M., Vlassara H., Cerami A. Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med. 1984 Oct;101(4):527–537. doi: 10.7326/0003-4819-101-4-527. [DOI] [PubMed] [Google Scholar]
- Bunn H. F. Nonenzymatic glycosylation of protein: relevance to diabetes. Am J Med. 1981 Feb;70(2):325–330. doi: 10.1016/0002-9343(81)90769-5. [DOI] [PubMed] [Google Scholar]
- Cerami A., Stevens V. J., Monnier V. M. Role of nonenzymatic glycosylation in the development of the sequelae of diabetes mellitus. Metabolism. 1979 Apr;28(4 Suppl 1):431–437. doi: 10.1016/0026-0495(79)90051-9. [DOI] [PubMed] [Google Scholar]
- Chiou S. H., Chylack L. T., Jr, Tung W. H., Bunn H. F. Nonenzymatic glycosylation of bovine lens crystallins. Effect of aging. J Biol Chem. 1981 May 25;256(10):5176–5180. [PubMed] [Google Scholar]
- Cook C. S., McGahan M. C. Copper concentration in cornea, iris, normal, and cataractous lenses and intraocular fluids of vertebrates. Curr Eye Res. 1986 Jan;5(1):69–76. doi: 10.3109/02713688608995168. [DOI] [PubMed] [Google Scholar]
- Harding J. J. Nonenzymatic covalent posttranslational modification of proteins in vivo. Adv Protein Chem. 1985;37:247–334. doi: 10.1016/s0065-3233(08)60066-2. [DOI] [PubMed] [Google Scholar]
- Hunt J. V., Dean R. T., Wolff S. P. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J. 1988 Nov 15;256(1):205–212. doi: 10.1042/bj2560205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang Z. Y., Woollard A. C., Wolff S. P. Hydrogen peroxide production during experimental protein glycation. FEBS Lett. 1990 Jul 30;268(1):69–71. doi: 10.1016/0014-5793(90)80974-n. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Monnier V. M., Cerami A. Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science. 1981 Jan 30;211(4481):491–493. doi: 10.1126/science.6779377. [DOI] [PubMed] [Google Scholar]
- Mullarkey C. J., Edelstein D., Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun. 1990 Dec 31;173(3):932–939. doi: 10.1016/s0006-291x(05)80875-7. [DOI] [PubMed] [Google Scholar]
- Nath R., Srivastava S. K., Singh K. Accumulation of copper and inhibition of lactate dehydrogenase activity in human senile cataractous lens. Indian J Exp Biol. 1969 Jan;7(1):25–26. [PubMed] [Google Scholar]
- Ortwerth B. J., Feather M. S., Olesen P. R. The precipitation and cross-linking of lens crystallins by ascorbic acid. Exp Eye Res. 1988 Jul;47(1):155–168. doi: 10.1016/0014-4835(88)90032-2. [DOI] [PubMed] [Google Scholar]
- Pirie A. Color and solubility of the proteins of human cataracts. Invest Ophthalmol. 1968 Dec;7(6):634–650. [PubMed] [Google Scholar]
- Rácz P., Ordögh M. Investigations on trace elements in normal and senile cataractous lenses. Activation analysis of copper, zinc, manganese, cobalt, rubidium, scandium, and nickel. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1977 Sep 30;204(1):67–72. doi: 10.1007/BF02387418. [DOI] [PubMed] [Google Scholar]
- SHLOPAK T. V. [Some peculiarities of the chimism of the crystalline lens under normal and pathological conditions]. Oftalmol Zh. 1962;17:347–351. [PubMed] [Google Scholar]
- Sakurai T., Kimura S., Nakano M., Kimura H. Oxidative modification of glycated low density lipoprotein in the presence of iron. Biochem Biophys Res Commun. 1991 May 31;177(1):433–439. doi: 10.1016/0006-291x(91)92002-2. [DOI] [PubMed] [Google Scholar]
- Sakurai T., Sugioka K., Nakano M. O2- generation and lipid peroxidation during the oxidation of a glycated polypeptide, glycated polylysine, in the presence of iron-ADP. Biochim Biophys Acta. 1990 Mar 12;1043(1):27–33. doi: 10.1016/0005-2760(90)90106-8. [DOI] [PubMed] [Google Scholar]
- Sakurai T., Tsuchiya S. Superoxide production from nonenzymatically glycated protein. FEBS Lett. 1988 Aug 29;236(2):406–410. doi: 10.1016/0014-5793(88)80066-8. [DOI] [PubMed] [Google Scholar]
- Wolff S. P., Dean R. T. Glucose autoxidation and protein modification. The potential role of 'autoxidative glycosylation' in diabetes. Biochem J. 1987 Jul 1;245(1):243–250. doi: 10.1042/bj2450243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolff S. P., Jiang Z. Y., Hunt J. V. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic Biol Med. 1991;10(5):339–352. doi: 10.1016/0891-5849(91)90040-a. [DOI] [PubMed] [Google Scholar]

