Abstract
Cholecystokinin octapeptide (CCK-8) has been shown to be coupled to phosphoinositide turnover in pancreatic acini as well as in a kind of neuroblastoma cell and a human embryonic cell line. Little is known, however, about its link with phosphatidylinositol breakdown in the brain. The brains (minus cerebella) from 1-2-day-old neonatal rats were enzymically dissociated into single cells. The intact cells were prelabelled by incubation with myo-[3H]inositol for 3 h, and were then stimulated with agonists in the presence of 10 mM-LiCl. Carbachol at 1 mM induced an increase in InsP3 labelling in brain cells (peak at 30 min, and then a gradual decrease), and a static accumulation of InsP with time, whereas the labelling of InsP2 remained essentially unchanged. A very similar time-response curve was obtained for 10 nM-CCK-8 in stimulating phosphoinositide turnover. The dose-response curve for incubated brain cells revealed that the formation of InsP3 increased when the concentration of CCK-8 was increased from 0.1 to 10 nM. A further increase in CCK-8 concentration to 100-1000 nM resulted in a gradual decrease in InsP3 formation. InsP and InsP2 levels stayed relatively stable. The production of InsP3 stimulated by 10 nM-CCK-8 was dose-dependently suppressed by the CCK-A antagonist Devazepide in the concentration range 1-10 nM; the effect declined when the concentration was further increased to 100-1000 nM. In contrast, the CCK-B antagonist L365,260 showed a sustained suppression of InsP3 production at concentrations above 0.1 nM, i.e. in the range 1-1000 nM. The results provide evidence that CCK-8 stimulates the turnover of phosphoinositide and increases InsP3 labelling in dissociated neonatal-rat brain cells, in which both CCK-A and CCK-B receptors seem to be involved.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrett R. W., Steffey M. E., Wolfram C. A. Type-A cholecystokinin binding sites in cow brain: characterization using (-)-[3H]L364718 membrane binding assays. Mol Pharmacol. 1989 Aug;36(2):285–290. [PubMed] [Google Scholar]
- Barrett R. W., Steffey M. E., Wolfram C. A. Type-A cholecystokinin receptors in CHP212 neuroblastoma cells: evidence for association with G protein and activation of phosphoinositide hydrolysis. Mol Pharmacol. 1989 Apr;35(4):394–400. [PubMed] [Google Scholar]
- Batty I. H., Nahorski S. R. Rapid accumulation and sustained turnover of inositol phosphates in cerebral-cortex slices after muscarinic-receptor stimulation. Biochem J. 1989 May 15;260(1):237–241. doi: 10.1042/bj2600237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Batty I. R., Nahorski S. R., Irvine R. F. Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem J. 1985 Nov 15;232(1):211–215. doi: 10.1042/bj2320211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beinfeld M. C. Cholecystokinin in the central nervous system: a minireview. Neuropeptides. 1983 Oct;3(6):411–427. doi: 10.1016/0143-4179(83)90032-x. [DOI] [PubMed] [Google Scholar]
- Brown E., Kendall D. A., Nahorski S. R. Inositol phospholipid hydrolysis in rat cerebral cortical slices: I. Receptor characterisation. J Neurochem. 1984 May;42(5):1379–1387. doi: 10.1111/j.1471-4159.1984.tb02798.x. [DOI] [PubMed] [Google Scholar]
- Dildy J. E., Leslie S. W. Ethanol inhibits NMDA-induced increases in free intracellular Ca2+ in dissociated brain cells. Brain Res. 1989 Oct 16;499(2):383–387. doi: 10.1016/0006-8993(89)90789-0. [DOI] [PubMed] [Google Scholar]
- Faris P. L., Komisaruk B. R., Watkins L. R., Mayer D. J. Evidence for the neuropeptide cholecystokinin as an antagonist of opiate analgesia. Science. 1983 Jan 21;219(4582):310–312. doi: 10.1126/science.6294831. [DOI] [PubMed] [Google Scholar]
- Gonzales R. A., Feldstein J. B., Crews F. T., Raizada M. K. Receptor-mediated inositide hydrolysis is a neuronal response: comparison of primary neuronal and glial cultures. Brain Res. 1985 Oct 21;345(2):350–355. doi: 10.1016/0006-8993(85)91015-7. [DOI] [PubMed] [Google Scholar]
- Gut S. H., Demoliou-Mason C. D., Hunter J. C., Hughes J., Barnard E. A. Solubilization and characterisation of the cholecystokininB binding site from pig cerebral cortex. Eur J Pharmacol. 1989 Oct 17;172(4-5):339–346. doi: 10.1016/0922-4106(89)90014-x. [DOI] [PubMed] [Google Scholar]
- Hill D. R., Campbell N. J., Shaw T. M., Woodruff G. N. Autoradiographic localization and biochemical characterization of peripheral type CCK receptors in rat CNS using highly selective nonpeptide CCK antagonists. J Neurosci. 1987 Sep;7(9):2967–2976. doi: 10.1523/JNEUROSCI.07-09-02967.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill D. R., Shaw T. M., Graham W., Woodruff G. N. Autoradiographical detection of cholecystokinin-A receptors in primate brain using 125I-Bolton Hunter CCK-8 and 3H-MK-329. J Neurosci. 1990 Apr;10(4):1070–1081. doi: 10.1523/JNEUROSCI.10-04-01070.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill R. G., Hughes J., Pittaway K. M. Antinociceptive action of cholecystokinin octapeptide (CCK 8) and related peptides in rats and mice: effects of naloxone and peptidase inhibitors. Neuropharmacology. 1987 Apr;26(4):289–300. doi: 10.1016/0028-3908(87)90180-8. [DOI] [PubMed] [Google Scholar]
- Hruby V. J., Fang S. A., Knapp R., Kazmierski W., Lui G. K., Yamamura H. I. Cholecystokinin analogues with high affinity and selectivity for brain membrane receptors. Int J Pept Protein Res. 1990 Jun;35(6):566–573. doi: 10.1111/j.1399-3011.1990.tb00263.x. [DOI] [PubMed] [Google Scholar]
- Lo W. W., Hughes J. A novel cholera toxin-sensitive G-protein (Gc) regulating receptor-mediated phosphoinositide signalling in human pituitary clonal cells. FEBS Lett. 1987 Aug 17;220(2):327–331. doi: 10.1016/0014-5793(87)80840-2. [DOI] [PubMed] [Google Scholar]
- Lo W. W., Hughes J. Differential regulation of cholecystokinin- and muscarinic-receptor-mediated phosphoinositide turnover in Flow 9000 cells. Biochem J. 1988 May 1;251(3):625–630. doi: 10.1042/bj2510625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macdonald R. L., Werz M. A. Dynorphin A decreases voltage-dependent calcium conductance of mouse dorsal root ganglion neurones. J Physiol. 1986 Aug;377:237–249. doi: 10.1113/jphysiol.1986.sp016184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moran T. H., Robinson P. H., Goldrich M. S., McHugh P. R. Two brain cholecystokinin receptors: implications for behavioral actions. Brain Res. 1986 Jan 1;362(1):175–179. doi: 10.1016/0006-8993(86)91413-7. [DOI] [PubMed] [Google Scholar]
- Muraoka S., Takahashi T. Primary dissociated cell culture of fetal rat central nervous tissue. I. Immunocytochemical and ultrastructural studies of cell development and synaptogenesis. Brain Res Dev Brain Res. 1989 Sep 1;49(1):51–62. doi: 10.1016/0165-3806(89)90058-8. [DOI] [PubMed] [Google Scholar]
- Ransom B. R., Neale E., Henkart M., Bullock P. N., Nelson P. G. Mouse spinal cord in cell culture. I. Morphology and intrinsic neuronal electrophysiologic properties. J Neurophysiol. 1977 Sep;40(5):1132–1150. doi: 10.1152/jn.1977.40.5.1132. [DOI] [PubMed] [Google Scholar]
- Rehfeld J. F. Immunochemical studies on cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog. J Biol Chem. 1978 Jun 10;253(11):4022–4030. [PubMed] [Google Scholar]
- Schoepp D. D., Johnson B. G. Excitatory amino acid agonist-antagonist interactions at 2-amino-4-phosphonobutyric acid-sensitive quisqualate receptors coupled to phosphoinositide hydrolysis in slices of rat hippocampus. J Neurochem. 1988 May;50(5):1605–1613. doi: 10.1111/j.1471-4159.1988.tb03050.x. [DOI] [PubMed] [Google Scholar]
- Toru T., Konno F., Takayanagi I., Hirobe M. Kappa-receptor mechanisms in synaptosomal Ca uptake. Gen Pharmacol. 1989;20(2):249–252. doi: 10.1016/0306-3623(89)90025-6. [DOI] [PubMed] [Google Scholar]
- Vanderhaeghen J. J., Signeau J. C., Gepts W. New peptide in the vertebrate CNS reacting with antigastrin antibodies. Nature. 1975 Oct 16;257(5527):604–605. doi: 10.1038/257604a0. [DOI] [PubMed] [Google Scholar]
- Wang J. F., Han S. P., Lu Z., Wang X. J., Han J. S., Ren M. F. Effect of calcium ion on analgesia of opioid peptides. Int J Neurosci. 1989 Aug;47(3-4):279–285. doi: 10.3109/00207458908987440. [DOI] [PubMed] [Google Scholar]
- Wennogle L., Wysowskyj H., Steel D. J., Petrack B. Regulation of central cholecystokinin recognition sites by guanyl nucleotides. J Neurochem. 1988 Mar;50(3):954–959. doi: 10.1111/j.1471-4159.1988.tb03004.x. [DOI] [PubMed] [Google Scholar]
- Willems P. H., Van Nooij I. G., De Pont J. J. Stimulatory and inhibitory effects of TMB-8 on pancreatic enzyme secretion. Biochim Biophys Acta. 1986 Oct 10;888(3):255–262. doi: 10.1016/0167-4889(86)90223-5. [DOI] [PubMed] [Google Scholar]
- Williamson J. R., Cooper R. H., Joseph S. K., Thomas A. P. Inositol trisphosphate and diacylglycerol as intracellular second messengers in liver. Am J Physiol. 1985 Mar;248(3 Pt 1):C203–C216. doi: 10.1152/ajpcell.1985.248.3.C203. [DOI] [PubMed] [Google Scholar]
- Zelles T., Harsing L. G., Vizi E. S. Characterization of neuronal cholecystokinin receptor by L-364,718 in Auerbach's plexus. Eur J Pharmacol. 1990 Mar 13;178(1):101–104. doi: 10.1016/0014-2999(90)94799-4. [DOI] [PubMed] [Google Scholar]
