Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Aug 1;285(Pt 3):889–898. doi: 10.1042/bj2850889

Stability of Arthrobacter D-xylose isomerase to denaturants and heat.

M Rangarajan 1, B Asboth 1, B S Hartley 1
PMCID: PMC1132879  PMID: 1497626

Abstract

There was no inactivation of Mg(2+)-containing Arthrobacter D-xylose isomerase up to 1 h in 0-8 M-urea at 22 degrees C, but over this range there was rapid reversible dissociation into fully active dimers with a midpoint around 4 M-urea, as shown by gradient urea gels with an activity stain, and by ion-exchange chromatography and gel filtration in urea buffers. These dimers must have the A-B* conformation, since the tetramer could dissociate into A-A*, A-B or A-B* dimer conformations, but only residues across the A-B* interface contribute to the active site. The kinetics of inactivation of the Mg(2+)-containing enzyme in 8 M-urea at higher temperatures suggest a partially unfolded Mg-A-B* dimer intermediate with 50% activity, followed by irreversible inactivation coincident with the appearance of unfolded monomer. In 0-4 M guanidinium chloride, a similar reversible dissociation into active dimers occurs, but activity falls, suggesting that A-A* and/or A-B dimers might be part of the mixture. Low concentrations of SDS also give active dimers leading to unfolded monomers, but SDS above 1% (w/v) provides relative stabilization. The apoenzyme is least thermostable (t 1/2 at 80 degrees C, pH 7, = 0.06 h) but Mg2+ stabilizes strongly (t 1/2 = 5.5 h) and Co2+ even more so. Competitive inhibitors or substrates provide a small further stabilization, but this effect is more marked at 80 degrees C, pH 5.5. Together with a marked decrease in optimum pH with temperature, this allows batch isomerizations of glucose under these conditions that produce clean but sweeter syrups.

Full text

PDF
889

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Collyer C. A., Henrick K., Blow D. M. Mechanism for aldose-ketose interconversion by D-xylose isomerase involving ring opening followed by a 1,2-hydride shift. J Mol Biol. 1990 Mar 5;212(1):211–235. doi: 10.1016/0022-2836(90)90316-E. [DOI] [PubMed] [Google Scholar]
  2. Creighton T. E. Electrophoretic analysis of the unfolding of proteins by urea. J Mol Biol. 1979 Apr 5;129(2):235–264. doi: 10.1016/0022-2836(79)90279-1. [DOI] [PubMed] [Google Scholar]
  3. DISCHE Z., BORENFREUND E. A new spectrophotometric method for the detection and determination of keto sugars and trioses. J Biol Chem. 1951 Oct;192(2):583–587. [PubMed] [Google Scholar]
  4. Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M. Hydrogen ion buffers for biological research. Biochemistry. 1966 Feb;5(2):467–477. doi: 10.1021/bi00866a011. [DOI] [PubMed] [Google Scholar]
  5. Hagel P., Gerding J. J., Fieggen W., Bloemendal H. Cyanate formation in solutions of urea. I. Calculation of cyanate concentrations at different temperature and pH. Biochim Biophys Acta. 1971 Sep 28;243(3):366–373. doi: 10.1016/0005-2795(71)90003-1. [DOI] [PubMed] [Google Scholar]
  6. Henrick K., Collyer C. A., Blow D. M. Structures of D-xylose isomerase from Arthrobacter strain B3728 containing the inhibitors xylitol and D-sorbitol at 2.5 A and 2.3 A resolution, respectively. J Mol Biol. 1989 Jul 5;208(1):129–157. doi: 10.1016/0022-2836(89)90092-2. [DOI] [PubMed] [Google Scholar]
  7. Lee C. Y., Bagdasarian M., Meng M. H., Zeikus J. G. Catalytic mechanism of xylose (glucose) isomerase from Clostridium thermosulfurogenes. Characterization of the structural gene and function of active site histidine. J Biol Chem. 1990 Nov 5;265(31):19082–19090. [PubMed] [Google Scholar]
  8. Loviny-Anderton T., Shaw P. C., Shin M. K., Hartley B. S. D-Xylose (D-glucose) isomerase from Arthrobacter strain N.R.R.L. B3728. Gene cloning, sequence and expression. Biochem J. 1991 Jul 1;277(Pt 1):263–271. doi: 10.1042/bj2770263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rangarajan M., Hartley B. S. Mechanism of D-fructose isomerization by Arthrobacter D-xylose isomerase. Biochem J. 1992 Apr 1;283(Pt 1):223–233. doi: 10.1042/bj2830223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Smith C. A., Rangarajan M., Hartley B. S. D-Xylose (D-glucose) isomerase from Arthrobacter strain N.R.R.L. B3728. Purification and properties. Biochem J. 1991 Jul 1;277(Pt 1):255–261. doi: 10.1042/bj2770255. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES