Abstract
p-Nitrophenylphosphocholine phosphodiesterase activity was purified 5000-fold from mouse brain by treatment of membranes with Bacillus cereus phospholipase C preparation and sequential chromatographies on concanavalin A-Sepharose and CM-Sephadex columns. The phosphodiesterase (Zn(2+)-requiring) showed Km and Vmax. values of 5.5 microM and 4.2 mumol/min per mg respectively in the hydrolysis of p-nitrophenylphosphocholine, and possessed an optimum pH of 10.5 and a molecular mass of approx. 74 kDa. The purified enzyme was found to convert glycerophosphocholine into glycerol and phosphocholine, with Km and Vmax. of 48 microM and 5 mumol/min per mg respectively. In the hydrolysis of glycerophosphocholine the enzyme also exhibited a Zn2+ requirement and optimal pH at 10.5. Additionally, the p-nitrophenylphosphocholine phosphodiesterase activity was competitively inhibited by glycerophosphocholine, with a Ki value of 50 microM. These observations, together with chromatographic behaviour and heat-denaturation analyses, indicate that both p-nitrophenylphosphocholine phosphodiesterase and glycerophosphocholine cholinephosphodiesterase activities reside in the same protein.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abra R. M., Quinn P. J. A novel pathway for phosphatidylcholine catabolism in rat brain homogenates. Biochim Biophys Acta. 1975 Mar 24;380(3):436–441. doi: 10.1016/0005-2760(75)90111-3. [DOI] [PubMed] [Google Scholar]
- Abra R. M., Quinn P. J. Some characteristics of sn-glycero-3-phosphocholine diesterases from rat brain. Biochim Biophys Acta. 1976 Jun 22;431(3):631–639. doi: 10.1016/0005-2760(76)90227-7. [DOI] [PubMed] [Google Scholar]
- Baldwin J. J., Cornatzer W. E. Rat kidney glycerylphosphorylcholine diesterase. Biochim Biophys Acta. 1968 Oct 22;164(2):195–204. doi: 10.1016/0005-2760(68)90146-x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Edgar A. D., Freysz L., Horrocks L. A., Mandel P. Specific stimulation of phospholipase activities with phosphatidylethanolamine in transformed cells. Biochim Biophys Acta. 1984 Dec 6;796(3):238–242. doi: 10.1016/0005-2760(84)90123-1. [DOI] [PubMed] [Google Scholar]
- Janzen L., Tourtellotte W. W., Kanfer J. N. Glycerylphosphocholine phosphocholine phosphodiesterase activity is reduced in multiple sclerosis plaques. Exp Neurol. 1990 Aug;109(2):243–246. doi: 10.1016/0014-4886(90)90079-8. [DOI] [PubMed] [Google Scholar]
- Kanfer J. N., McCartney D. G. Glycerophosphorylcholine phosphocholine phosphodiesterase activity of rat brain myelin. J Neurosci Res. 1989 Oct;24(2):231–240. doi: 10.1002/jnr.490240214. [DOI] [PubMed] [Google Scholar]
- Kanfer J. N., McCartney D. An unusual phosphodiesterase activity towards p-nitrophenylphosphorylcholine present in rat brain membranes. Neurochem Res. 1990 Oct;15(10):987–992. doi: 10.1007/BF00965744. [DOI] [PubMed] [Google Scholar]
- Kurioka S., Matsuda M. Phospholipase C assay using p-nitrophenylphosphoryl-choline together with sorbitol and its application to studying the metal and detergent requirement of the enzyme. Anal Biochem. 1976 Sep;75(1):281–289. doi: 10.1016/0003-2697(76)90078-6. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Low M. G. The glycosyl-phosphatidylinositol anchor of membrane proteins. Biochim Biophys Acta. 1989 Dec 6;988(3):427–454. doi: 10.1016/0304-4157(89)90014-2. [DOI] [PubMed] [Google Scholar]
- Masoom M., Roberti R., Binaglia L. Determination of phosphatidylcholine in a flow injection system using immobilized enzyme reactors. Anal Biochem. 1990 Jun;187(2):240–245. doi: 10.1016/0003-2697(90)90450-n. [DOI] [PubMed] [Google Scholar]
- McGowan M. W., Artiss J. D., Strandbergh D. R., Zak B. A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clin Chem. 1983 Mar;29(3):538–542. [PubMed] [Google Scholar]
- Nakabayashi T., Ikezawa H. Alkaline phosphodiesterase I release from eucaryotic plasma membranes by phosphatidylinositol-specific phospholipase C. I. The release from rat organs. J Biochem. 1986 Mar;99(3):703–712. doi: 10.1093/oxfordjournals.jbchem.a135529. [DOI] [PubMed] [Google Scholar]
- Nakabayashi T., Ikezawa H. Release of alkaline phosphodiesterase I from rat kidney plasma membrane produced by the phosphatidylinositol-specific phospholipase C of Bacillus thuringiensis. Cell Struct Funct. 1984 Sep;9(3):247–263. doi: 10.1247/csf.9.247. [DOI] [PubMed] [Google Scholar]
- Nicolosi R. J., Hayes K. C. Composition of plasma and nascent very low density lipoprotein from perfused livers of hypercholesterolemic squirrel monkeys. Lipids. 1980 Aug;15(8):549–554. doi: 10.1007/BF02534177. [DOI] [PubMed] [Google Scholar]
- Sok D. E., Kim M. R. A p-nitrophenyl phosphorylcholine phosphodiesterase from mouse brain. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1317–1323. doi: 10.1016/0006-291x(90)91593-h. [DOI] [PubMed] [Google Scholar]
- Spanner S., Ansell G. B. The hydrolysis of glycerophosphocholine by rat brain microsomes: activation and inhibition. Neurochem Res. 1987 Feb;12(2):203–206. doi: 10.1007/BF00979538. [DOI] [PubMed] [Google Scholar]
- Thomas P. D., Poznansky M. J. Lipid peroxidation inactivates rat liver microsomal glycerol-3-phosphate acyl transferase. Effect of iron and copper salts and carbon tetrachloride. J Biol Chem. 1990 Feb 15;265(5):2684–2691. [PubMed] [Google Scholar]